Previous Issue
Volume 2, September
 
 

Spectrosc. J., Volume 2, Issue 4 (December 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 7981 KiB  
Article
Vibrational Markers of a Model Circulating Metastatic Cells LLC-R9
by Olena Gnatyuk, Denys Kolesnyk, Taras Voitsitskyi, Sergiy Karakhim, Andriy Nikolenko, Andrej Dementjev, Galina Solyanik and Galyna Dovbeshko
Spectrosc. J. 2024, 2(4), 306-321; https://doi.org/10.3390/spectroscj2040018 - 26 Nov 2024
Viewed by 99
Abstract
Metastasis in oncological diseases remains one of the main reasons for negative prognosis regarding treatment. Any new data on the biophysical and biochemical characteristics of circulating metastatic cells will help to develop a concept for antimetastatic therapy. In this study, we found a [...] Read more.
Metastasis in oncological diseases remains one of the main reasons for negative prognosis regarding treatment. Any new data on the biophysical and biochemical characteristics of circulating metastatic cells will help to develop a concept for antimetastatic therapy. In this study, we found a number of differences in the spectroscopic and morphological features of circulating metastatic cells. FT-IR and Raman spectra cultivated by adhesive and de-adhesive methods (with the latter used as a model for metastatic cells) have shown spectroscopic features, namely in FT-IR spectra in the region of CH stretching vibrations, which are associated with structural rearrangements in the cell membrane, as well as changes in the intensity and position of the PO2 group vibration bands correlated with proliferative activity. The spectral features in the regions of OH stretching and Amide I vibrations as well as other spectral markers of the metastatic cells grown under different cultivation conditions were derived. Raman spectra showed a redistribution of the amino acid Tyr/Trp (tryptophan to tyrosine) ratio and in Tyr doublet intensity in the region of 500–900 cm−1, as well as varying glycogen levels in different cells. The spectroscopic markers are in accordance with biochemical data. CARS and confocal optical microscopy were applied to determine the state of the cells and the F-actin expression level, which turned out to be higher for adhesive cells in comparison with de-adhesive cells. The shape and the morphological properties of the cells differ drastically. The correlation of vibrational markers with biochemical data and the cytofluorometric method was discussed. Full article
Show Figures

Figure 1

19 pages, 2247 KiB  
Article
Diode Laser Absorption Spectroscopy and DSMC Calculations for the Determination of Species-Specific Diffusion Coefficients of a CO2-N2O Gas Mixture in the Transition Gas Regime
by Kannan Munusamy, Harald Kleine and Sean O’Byrne
Spectrosc. J. 2024, 2(4), 287-305; https://doi.org/10.3390/spectroscj2040017 - 25 Nov 2024
Viewed by 344
Abstract
Multicomponent gas mixture diffusion in a microscale confined flow in the transition gas regime at Knudsen numbers (Kn) above 0.1 has potential engineering applications in gas-phase microfluidics. Although the calculation of the diffusion coefficient accounts for the influence of the concentration of other [...] Read more.
Multicomponent gas mixture diffusion in a microscale confined flow in the transition gas regime at Knudsen numbers (Kn) above 0.1 has potential engineering applications in gas-phase microfluidics. Although the calculation of the diffusion coefficient accounts for the influence of the concentration of other species in a multicomponent gas mixture, the higher rate of gas-wall collision at 0.1 < Kn ≤ 10 introduces additional complications not predicted by conventional calculation methods. Thus, simultaneous measurement of diffusion coefficients for multiple gas species ensures accurate estimation of the diffusion coefficient of a particular species that includes the effect of interactions with other species and wall surface conditions in a multicomponent gas mixture at Kn > 0.1. However, most experimental methods for measuring the diffusion coefficient are not species-specific and therefore cannot directly differentiate between the species diffusing in a gas mixture. Thus, this paper demonstrates a new experiment methodology consisting of a two-bulb diffusion configuration accompanied by a tunable diode laser absorption spectroscopy detection technique for species-specific, in-situ, simultaneous measurement of the effective diffusion coefficient for a CO2-N2O gas mixture in the transition gas regime. The experimental results are compared against direct simulation Monte Carlo calculations and the Bosanquet approximation showing a deviation that has not been reported in the literature before. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Figure 1

23 pages, 3421 KiB  
Article
Probing the Charge State and the Intermolecular Environment by Vibrational Spectroscopy: The Peculiar Modulation of Frequencies and Band Intensities of F4TCNQ and Its Anion
by Carlo Saporiti, Luigi Brambilla, Matteo Tommasini, Mirella Del Zoppo, Chiara Castiglioni and Giuseppe Zerbi
Spectrosc. J. 2024, 2(4), 264-286; https://doi.org/10.3390/spectroscj2040016 - 15 Nov 2024
Viewed by 270
Abstract
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is a molecule widely employed as a very effective p-dopant of semi-conducting polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT). The CN stretching transitions of F4TCNQ are exceptionally sensitive to the charge state of the molecule, thus allowing the doping diagnosis via IR spectroscopy. [...] Read more.
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is a molecule widely employed as a very effective p-dopant of semi-conducting polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT). The CN stretching transitions of F4TCNQ are exceptionally sensitive to the charge state of the molecule, thus allowing the doping diagnosis via IR spectroscopy. Less pronounced frequency shifts can reveal characteristics of the intermolecular environment. We present a systematic study based on Density Functional Theory (DFT) calculations and on experiments aimed at exploring how different factors, such as the charge state and the environment, modify the vibrational spectra of F4TCNQ. While several effects on the vibrational frequencies are well known and have been thoroughly investigated in the past, this study focuses on the infrared intensities of the CN stretching modes and reveals that they are strongly affected both by the charge state of the molecule and by the surrounding medium: it is then mandatory to consider such remarkable intensity modulation for any quantitative diagnosis based on spectroscopic measurements, e.g., concerning the number of F4TCNQ molecules involved in the formation of charge transfer complexes. Full article
Show Figures

Figure 1

48 pages, 9198 KiB  
Review
Illuminating Malaria: Spectroscopy’s Vital Role in Diagnosis and Research
by Bayden R. Wood, John A. Adegoke, Thulya Chakkumpulakkal Puthan Veettil, Ankit Dodla, Keith Dias, Neha Mehlawat, Callum Gassner, Victoria Stock, Sarika Joshi, Magdalena Giergiel, Diana E. Bedolla and Philip Heraud
Spectrosc. J. 2024, 2(4), 216-263; https://doi.org/10.3390/spectroscj2040015 - 15 Nov 2024
Viewed by 344
Abstract
Spectroscopic techniques have emerged as crucial tools in the field of malaria research, offering immense potential for improved diagnosis and enhanced understanding of the disease. This review article pays tribute to the pioneering contributions of Professor Henry Mantsch in the realm of clinical [...] Read more.
Spectroscopic techniques have emerged as crucial tools in the field of malaria research, offering immense potential for improved diagnosis and enhanced understanding of the disease. This review article pays tribute to the pioneering contributions of Professor Henry Mantsch in the realm of clinical biospectroscopy, by comprehensively exploring the diverse applications of spectroscopic methods in malaria research. From the identification of reliable biomarkers to the development of innovative diagnostic approaches, spectroscopic techniques spanning the ultraviolet to far-infrared regions have played a pivotal role in advancing our knowledge of malaria. This review will highlight the multifaceted ways in which spectroscopy has contributed to the field, with a particular emphasis on its impact on diagnostic advancements and drug research. By leveraging the minimally invasive and highly accurate nature of spectroscopic techniques, researchers have made significant strides in improving the detection and monitoring of malaria parasites. These advancements hold the promise of enhancing patient outcomes and aiding in the global efforts towards the eradication of this devastating disease. Full article
Show Figures

Graphical abstract

10 pages, 3112 KiB  
Article
Benchtop 19F Nuclear Magnetic Resonance (NMR) Spectroscopy-Optimized Knorr Pyrazole Synthesis of Celecoxib and Mavacoxib, 3-(Trifluoromethyl) Pyrazolyl Benzenesulfonamides, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
by Andrew Chyu, Selina Xi, Joshua Kim, Galen Liu, Indalina Chan, Seoyeon Hong, Allen Ke, Thomas Lavery, Anushree Marimuthu, Arjun Akula and Edward Njoo
Spectrosc. J. 2024, 2(4), 206-215; https://doi.org/10.3390/spectroscj2040014 - 11 Nov 2024
Viewed by 637
Abstract
Fluorinated organic compounds have demonstrated remarkable utility in medicinal chemistry due to their enhanced metabolic stability and potent therapeutic efficacy. Several examples exist of fluorinated non-steroidal anti-inflammatory drugs (NSAIDs), including diflunisal, flurbiprofen, and trifluoromethylated pyrazoles celecoxib and mavacoxib. These trifluoromethylated pyrazoles, which are [...] Read more.
Fluorinated organic compounds have demonstrated remarkable utility in medicinal chemistry due to their enhanced metabolic stability and potent therapeutic efficacy. Several examples exist of fluorinated non-steroidal anti-inflammatory drugs (NSAIDs), including diflunisal, flurbiprofen, and trifluoromethylated pyrazoles celecoxib and mavacoxib. These trifluoromethylated pyrazoles, which are most commonly constructed through the cyclocondensation of a trifluorinated 1,3-dicarbonyl and an aryl hydrazine, are also found in numerous other drug candidates. Here, we interrogate the effects of solvents and the presence of Brønsted or Lewis acid catalysts on catalyzing this process. We highlight the utility of benchtop 19F NMR spectroscopy in enabling the real-time quantification of reaction progress and the identification of fluorinated species present in crude reaction mixtures without the need for cost-prohibitive deuterated solvents. Ultimately, we find that the reaction solvent has the greatest impact on the rate and product yield, and also found that the relationship between the keto-enol equilibrium of the dicarbonyl starting material pyrazole formation rate is highly solvent-dependent. More broadly, we describe the optimization of the yield and kinetics of trifluoromethylpyrazole formation in the synthesis of celecoxib and mavacoxib, which is made possible through high-throughput reaction screening on benchtop NMR. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Graphical abstract

18 pages, 1978 KiB  
Article
Infrared Spectroscopy and Photochemistry of Ethyl Maltol in Low-Temperature Argon Matrix
by İsa Sıdır, Susy Lopes, Timur Nikitin, Yadigar Gülseven Sıdır and Rui Fausto
Spectrosc. J. 2024, 2(4), 188-205; https://doi.org/10.3390/spectroscj2040013 - 3 Oct 2024
Viewed by 714
Abstract
Ethyl maltol was investigated using matrix isolation infrared spectroscopy and DFT calculations. In an argon matrix (14.5 K), the compound was found to exist in a single conformer (form I), characterized by an intramolecular hydrogen bond with an estimated energy of ~17 kJ [...] Read more.
Ethyl maltol was investigated using matrix isolation infrared spectroscopy and DFT calculations. In an argon matrix (14.5 K), the compound was found to exist in a single conformer (form I), characterized by an intramolecular hydrogen bond with an estimated energy of ~17 kJ mol−1. The IR spectrum of this conformer was assigned, and the molecule’s potential energy landscape was explored to understand the relative stability and isomerization dynamics of the conformers. Upon annealing the matrix to 41.5 K, ethyl maltol was found to predominantly aggregate into a centrosymmetric dimer (2× conformer I) bearing two intermolecular hydrogen bonds with an estimated energy of ca. 28 kJ mol−1 (per bond). The UV-induced (λ > 235 nm) photochemistry of the matrix-isolated ethyl maltol was also investigated. After 1 min of irradiation, band markers of two rearrangement photoproducts formed through the photoinduced detachment-attachment (PIDA) mechanism, in which the ethyl maltol radical acts as an intermediate, were observed: 1-ethyl-3-hydroxy-6-oxibicyclo [3.1.0] hex-3-en-2-one and 2-ethyl-2H-pyran-3,4-dione. The first undergoes subsequent reactions, rearranging to 4-hydroxy-4-propanoylcyclobut-2-en-1-one and photofragmenting to cyclopropenone and 2-hydroxybut-1-en-1-one. Other final products were also observed, specifically acetylene and CO (the expected fragmentation products of cyclopropenone), and CO2. Overall, the study demonstrated ethyl maltol’s high reactivity under UV irradiation, with significant photochemical conversion occurring within minutes. The rapid photochemical conversion, with complete consumption of the compound in 20 min, should be taken into account in designing practical applications of ethyl maltol. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop