Deep Space Exploration

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Astronautics & Space Science".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 5247

Special Issue Editors


E-Mail Website
Guest Editor
College of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: dynamics and control; guidance navigation and control; intelligent and autonomous systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute for Aerospace Studies, University of Toronto, Toronto, ON, Canada
Interests: space systems engineering; concurrent engineering; mechatronics; space manipulators; planetary rovers; space systems miniaturization; spacecraft formation flying; asteroid engineering; intelligent robot teams; reconfigurable manipulators, legged locomotion for exploratory rovers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Centre Spatial de Liège and Department of Space Instrumentation, University of Liège, 4031 Liège, Belgium
Interests: engineering physics; aeronautical engineering; aerospace engineering; thermal engineering; engineering thermodynamics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Astronautics, Nanjing Agricultural University, Nanjing, China
Interests: astrodynamics; orbit design and optimization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Deep space exploration is dedicated to advancing our understanding and capabilities of exploring the depths of outer space. The exploration of deep space presents unique challenges and opportunities that can not only drive scientific and technological advancements, but also inspire the next generation of scientists, engineers, entrepreneurs and explorers. In recent years, there has been a growing interest in deep space missions, fueled by the desire to uncover the mysteries of the Universe and expand human presence beyond Earth's boundaries.

The current landscape of deep space exploration is characterized by remarkable achievements and ongoing research efforts. However, several crucial questions and challenges remain. These include developing advanced propulsion systems for long-duration interstellar travel, engineering robust and autonomous spacecraft capable of withstanding extreme conditions, designing robotic systems for space and planetary operations, and devising efficient communication and navigation systems for deep space missions. Additionally, the protection of astronauts from the hazards of cosmic radiation and the sustainable utilization of space resources for long-term spacefaring are important considerations in the pursuit of deep space exploration.

We welcome contributions to this Special Issue that address the various aspects of deep space exploration. We encourage researchers and experts from multidisciplinary backgrounds to submit their original research, review articles, and conceptual studies. Topics of interest include but are not limited to:

  • Spacecraft design and engineering;
  • Propulsion technologies;
  • Mission planning and operations;
  • Orbital mechanics for deep space exploration;
  • Deep space exploration navigation guidance and control;
  • Robotics systems for space and planetary operations;
  • Artificial intelligence for deep space exploration;
  • Life support systems;
  • Planetary sciences;
  • Astrobiology;
  • Space resources utilization.

By bringing together cutting-edge research and diverse perspectives, this Special Issue aims to foster collaboration and drive innovation in the field of deep space exploration.

Prof. Dr. Shuang Li
Prof. Dr. M. Reza Emami
Prof. Dr. Pierre Rochus
Dr. Hongwei Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • space exploration
  • orbital mechanics
  • space missions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3704 KiB  
Article
Design of Entire-Flight Pinpoint Return Trajectory for Lunar DRO via Deep Neural Network
by Xuxing Huang, Baihui Ding, Bin Yang, Renyuan Xie, Zhengyong Guo, Jin Sha and Shuang Li
Aerospace 2024, 11(7), 566; https://doi.org/10.3390/aerospace11070566 - 10 Jul 2024
Viewed by 859
Abstract
Lunar DRO pinpoint return is the final stage of manned deep space exploration via a lunar DRO station. A re-entry capsule suffers from complicated dynamic and thermal effects during an entire flight. The optimization of the lunar DRO return trajectory exhibits strong non-linearity. [...] Read more.
Lunar DRO pinpoint return is the final stage of manned deep space exploration via a lunar DRO station. A re-entry capsule suffers from complicated dynamic and thermal effects during an entire flight. The optimization of the lunar DRO return trajectory exhibits strong non-linearity. To obtain a global optimal return trajectory, an entire-flight lunar DRO pinpoint return model including a Moon–Earth transfer stage and an Earth atmosphere re-entry stage is constructed. A re-entry point on the atmosphere boundary is introduced to connect these two stages. Then, an entire-flight global optimization framework for lunar DRO pinpoint return is developed. The design of the entire-flight return trajectory is simplified as the optimization of the re-entry point. Moreover, to further improve the design efficiency, a rapid landing point prediction method for the Earth re-entry is developed based on a deep neural network. This predicting network maps the re-entry point in the atmosphere and the landing point on Earth with respect to optimal control re-entry trajectories. Numerical simulations validate the optimization accuracy and efficiency of the proposed methods. The entire-flight return trajectory achieves a high accuracy of the landing point and low fuel consumption. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

16 pages, 7253 KiB  
Article
Trajectory Approximation of a Low-Performance E-Sail with Fixed Orientation
by Alessandro A. Quarta and Giovanni Mengali
Aerospace 2024, 11(7), 532; https://doi.org/10.3390/aerospace11070532 - 28 Jun 2024
Viewed by 577
Abstract
The Electric Solar Wind Sail (E-sail) is a propellantless propulsion system that converts solar wind dynamic pressure into a deep-space thrust through a grid of long conducting tethers. The first flight test, needed to experience the true potential of the E-sail concept, is [...] Read more.
The Electric Solar Wind Sail (E-sail) is a propellantless propulsion system that converts solar wind dynamic pressure into a deep-space thrust through a grid of long conducting tethers. The first flight test, needed to experience the true potential of the E-sail concept, is likely to be carried out using a single spinning cable deployed from a small satellite, such as a CubeSat. This specific configuration poses severe limitations to both the performance and the maneuverability of the spacecraft used to analyze the actual in situ thruster capabilities. In fact, the direction of the spin axis in a single-tether configuration can be considered fixed in an inertial reference frame, so that the classic sail pitch angle is no longer a control variable during the interplanetary flight. This paper aims to determine the polar form of the propelled trajectory and the characteristics of the osculating orbit of a spacecraft propelled by a low-performance spinning E-sail with an inertially fixed axis of rotation. Assuming that the spacecraft starts the trajectory from a parking orbit that coincides with the Earth’s heliocentric orbit and that its spin axis belongs to the plane of the ecliptic, a procedure is illustrated to solve the problem accurately with a set of simple analytical relations. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

24 pages, 4565 KiB  
Article
Modelling Rigid Body Potential of Small Celestial Bodies for Analyzing Orbit–Attitude Coupled Motions of Spacecraft
by Jinah Lee and Chandeok Park
Aerospace 2024, 11(5), 364; https://doi.org/10.3390/aerospace11050364 - 5 May 2024
Cited by 1 | Viewed by 1204
Abstract
The present study aims to propose a general framework of modeling rigid body potentials (RBPs) suitable for analyzing the orbit–attitude coupled motion of a spacecraft (S/C) near small celestial bodies, regardless of gravity estimation models. Here, ‘rigid body potential’ refers to the potential [...] Read more.
The present study aims to propose a general framework of modeling rigid body potentials (RBPs) suitable for analyzing the orbit–attitude coupled motion of a spacecraft (S/C) near small celestial bodies, regardless of gravity estimation models. Here, ‘rigid body potential’ refers to the potential of a small celestial body integrated across the finite volume of an S/C, assuming that the mass of the S/C has no influence on the motion of the small celestial body. First proposed is a comprehensive formulation for modeling the RBP including its associated force, torque, and Hessian matrix, which is then applied to three gravity estimation models. The Hessian of potential plays a crucial role in calculating the RBP. This study assesses the RBP via numerical simulations for the purpose of determining proper gravity estimation models and seeking modeling conditions. The gravity estimation models and the associated RBP are tested for eight small celestial bodies. In this study, we utilize distance units (DUs) instead of SI units, where the DU is defined as the mean radius of the given small celestial body. For a given specific distance in Dus, the relative error of the gravity estimation model at this distance has a similar value regardless of the small celestial body. However, the difference value between the potential and RBP depends on the DU; in other words, it depends on the size of the small celestial body. This implies that accurate gravity estimation models are imperative for conducting RBP analysis. The overall results can help develop a propagation system for orbit–attitude coupled motions of an S/C in the vicinity of small celestial bodies. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

9 pages, 770 KiB  
Article
Comparison of Doses in Lunar Habitats Located at the Surface and in Crater
by Naser T. Burahmah and Lawrence H. Heilbronn
Aerospace 2023, 10(11), 970; https://doi.org/10.3390/aerospace10110970 - 18 Nov 2023
Cited by 1 | Viewed by 1485
Abstract
As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside [...] Read more.
As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

Back to TopTop