Atmospheric Pollutants: Characteristics, Sources and Transport

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Quality".

Deadline for manuscript submissions: closed (28 November 2023) | Viewed by 13553

Special Issue Editors


E-Mail Website
Guest Editor
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
Interests: stereoscopic remote sensing; instrument technology; aerosol; nitrous acid; ozone; source analysis; atmospheric oxidation capacity
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Interests: stereoscopic observation; lidar; atmospheric chemistry model; data assimilation; machine learning
Special Issues, Collections and Topics in MDPI journals
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Interests: MAX-DOAS; air pollutant profile; optical remote sensing; neural network; downscaling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Air pollution sources can be roughly classified into direct emissions, secondary production and transport. Transportation can directly deteriorate the environment through the production and emission of a large number of pollutants. The movement of warm and humid air masses likely increases secondary aerosol formation by aggravating aqueous and heterogeneous reactions. Moreover, the variation in atmospheric oxidation capacity could also deeply influence several pollution processes; therefore, it is also critical to understand the source, distribution and transport process of atmospheric oxidants. In addition, considering their health risk to humans, it is also necessary to study the human health effects of different air pollutants. Field observations and model simulations are two important methods to understand the characteristics, physicochemical processes and transport processes of air pollutants. Thus, we also strongly encourage authors to use advanced observation technologies (satellite remote sensing, Lidar, MAX-DOAS, etc.), analysis schemes (e.g., big data and machine learning), instruments and models during their studies.

Solicited contributions include, but are not limited to, studies on the characteristics, sources and transport analysis of air pollutants through measurements and simulations. Research on environmental monitoring instruments and models is also encouraged. We invite authors to submit original research or to review previous work and summarize the current state of the science. Submissions of research work by multi-country groups are of significant interest.

Dr. Chengzhi Xing
Dr. Yan Xiang
Dr. Qihua Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stereoscopic observation
  • model
  • remote sensing
  • source analysis
  • transport
  • data assimilation
  • machine learning
  • aerosol
  • trace gases
  • atmospheric oxidation capacity
  • human health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 6319 KiB  
Article
Overview of the Trajectory-Ensemble Potential Source Apportionment Web (TraPSA-Web) Toolkit for Atmospheric Pollutant Source Identification
by Chuanlong Zhou, Hao Zhou, Philip K. Hopke and Thomas M. Holsen
Atmosphere 2024, 15(2), 176; https://doi.org/10.3390/atmos15020176 - 30 Jan 2024
Cited by 1 | Viewed by 1803
Abstract
Trajectory ensemble receptor models (TERMs) were widely used to determine the likely source locations and apportionment of air pollutants. This paper describes the development and applications of the Trajectory-ensemble Potential Source Apportionment Web application (TraPSA-Web), a comprehensive toolkit for likely atmospheric pollutant source [...] Read more.
Trajectory ensemble receptor models (TERMs) were widely used to determine the likely source locations and apportionment of air pollutants. This paper describes the development and applications of the Trajectory-ensemble Potential Source Apportionment Web application (TraPSA-Web), a comprehensive toolkit for likely atmospheric pollutant source location apportionments using TERMs and back trajectories generated with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The TERMs integrated within the TraPSA-web include Concentration Field Analysis (CFA), Concentration Weighted Trajectory (CWT), single-site and multiple-site Potential Source Contribution Function (PSCF), and Simplified Quantitative Transport Bias Analysis (SQBA). TraPSA-Web is designed as a web application with a user-friendly modern graphical user interface (GUI), which largely enhances the accessibility to the users. TraPSA-Web will provide the air quality research community with a sophisticated toolkit for (1) easy management of the research project and datasets, (2) efficient automatization for HYSPLIT configurations, calculations, and result aggregations, (3) flexible configurations for the research scenarios and TERM parameters, and (4) interactive visualizations for the pollutant pattern analysis and TERM result mapping. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

23 pages, 3937 KiB  
Article
Physical and Chemical Characteristics of Explosive Dust at Large Open-Pit Coal Mines in Inner Mongolia, China and Dust Control Research
by Junlong Yan, Zhiming Wang, Xiang Lu, Yuejinyi Wu, Huaiting Luo and Xin Liu
Atmosphere 2023, 14(11), 1678; https://doi.org/10.3390/atmos14111678 - 13 Nov 2023
Cited by 1 | Viewed by 1555
Abstract
To further promote dust control efforts in Chinese open-pit coal mines, this study focuses on the research of coal dust and rock dust produced by different explosions in the Haerwusu open-pit coal mine in China. By investigating the relationship between the physical and [...] Read more.
To further promote dust control efforts in Chinese open-pit coal mines, this study focuses on the research of coal dust and rock dust produced by different explosions in the Haerwusu open-pit coal mine in China. By investigating the relationship between the physical and chemical characteristics of dust particles from explosions in open-pit mines and the wetting properties of dust, the main factors influencing the wetting properties of explosive dust are identified. This provides a theoretical basis for subsequent dust control work in open-pit coal mines. Simultaneously, to formulate more effective dust suppressants and reduce explosive dust pollution, this study conducts experiments on the surface tension, contact angles, and complex solution compatibility to select suitable surfactants. Ultimately, the effectiveness of the dust suppressants is evaluated through permeability experiments and indoor dust suppression experiments. The research findings are as follows: (1) The significant factors affecting the wetting properties of coal dust are the fixed carbon content and D50, while the significant factor affecting the wetting properties of rock dust is D50. (2) The formulated dust suppressants can increase the permeation height of coal dust by at least 10 times, increase moisture absorption by at least 4 times, and reduce the TSP concentration by at least 81.4%. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

17 pages, 5465 KiB  
Article
Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China
by Fusheng Mou, Jing Luo, Qijin Zhang, Chuang Zhou, Song Wang, Fan Ye, Suwen Li and Youwen Sun
Atmosphere 2023, 14(4), 739; https://doi.org/10.3390/atmos14040739 - 19 Apr 2023
Cited by 3 | Viewed by 1587
Abstract
With the spread of the COVID-19 pandemic and the implementation of closure measures in 2020, population mobility and human activities have decreased, which has seriously impacted atmospheric quality. Huaibei City is an important coal and chemical production base in East China, which faces [...] Read more.
With the spread of the COVID-19 pandemic and the implementation of closure measures in 2020, population mobility and human activities have decreased, which has seriously impacted atmospheric quality. Huaibei City is an important coal and chemical production base in East China, which faces increasing environmental problems. The impact of anthropogenic activities on air quality in this area was investigated by comparing the COVID-19 lockdown in 2020 with the normal situation in 2021. Tropospheric NO2, HCHO and SO2 column densities were observed by ground-based multiple axis differential optical absorption spectroscopy (MAX-DOAS). In situ measurements for PM2.5, NO2, SO2 and O3 were also taken. The observation period was divided into four phases, the pre-lockdown period, phase 1 lockdown, phase 2 lockdown and the post-lockdown period. Ground-based MAX-DOAS results showed that tropospheric NO2, HCHO and SO2 column densities increased by 41, 14 and 14%, respectively, during phase 1 in 2021 vs. 2020. In situ results showed that NO2 and SO2 increased by 59 and 11%, respectively, during phase 1 in 2021 vs. 2020, but PM2.5 and O3 decreased by 15 and 17%, respectively. In the phase 2 period, due to the partial lifting of control measures, the concentration of pollutants did not significantly change. The weekly MAX-DOAS results showed that there was no obvious weekend effect of pollutants in the Huaibei area, and NO2, HCHO and SO2 had obvious diurnal variation characteristics. In addition, the relationship between the column densities and wind speed and direction in 2020 and 2021 was studied. The results showed that, in the absence of traffic control in 2021, elevated sources in the Eastern part of the city emitted large amounts of NO2. The observed ratios of HCHO to NO2 suggested that tropospheric ozone production involved NOX-limited scenarios. The correlation analysis between HCHO and different gases showed that HCHO mainly originated from primary emission sources related to SO2. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

13 pages, 1174 KiB  
Article
Impact of Water-Based Coating Substitution on VOCs Emission Characteristics for the Surface-Coating Industries and Policy Effectiveness: A Case Study in Jiangsu Province, China
by Sijia Xia, Qiuyue Zhao, Junhong Ji, Rongrong Wu, Lingxiao Chen, Yin Yin and Qian Liu
Atmosphere 2023, 14(4), 662; https://doi.org/10.3390/atmos14040662 - 31 Mar 2023
Cited by 3 | Viewed by 2229
Abstract
As solvent-based coatings are gradually phasing out in China, the volatile organic compounds (VOCs) emission characteristics of surface-coating industries have changed rapidly. Sector-based field measurements were conducted to build VOCs emission factors and source profiles of surface-coating industries in Jiangsu Province. A VOCs [...] Read more.
As solvent-based coatings are gradually phasing out in China, the volatile organic compounds (VOCs) emission characteristics of surface-coating industries have changed rapidly. Sector-based field measurements were conducted to build VOCs emission factors and source profiles of surface-coating industries in Jiangsu Province. A VOCs emission inventory was developed, and the projections for 2020 to 2030 were set. It was found that VOCs content in water-based coatings is 50.8% of solvent-based coatings on average. VOCs emission factors of solvent-based coatings ranged from 0.40 to 0.51 kg kg−1, while those of water-based coatings ranged from 0.14 to 0.24 kg kg−1. Compared to solvent-based coatings, the proportion of aromatics emitted from water-based coatings was 44.2% lower, while the proportion of oxygenated VOCs (OVOCs) was 11.6% higher. The results showed that VOCs emissions were about 134 Gg in Jiangsu Province in 2020, of which the solvent-based coating sources contributed 79.6% of the total. Aromatics were the main species contributing 52.9% of VOCs emissions and 85.9% of ozone formation potential (OFP). According to emission prediction results of four scenarios, the emission reduction of implementing low-content VOCs coating substitution is 8.7% higher than that of adopting the best available end-of-pipe treatment measures by 2030. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

18 pages, 3630 KiB  
Article
Forecasting Air Quality in Tripoli: An Evaluation of Deep Learning Models for Hourly PM2.5 Surface Mass Concentrations
by Marwa Winis Misbah Esager and Kamil Demirberk Ünlü
Atmosphere 2023, 14(3), 478; https://doi.org/10.3390/atmos14030478 - 28 Feb 2023
Cited by 12 | Viewed by 2994
Abstract
In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels [...] Read more.
In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 4530 KiB  
Review
Microplastic Pollution Research Based on the VOS Viewer Software: Research Trends, Ecological Effects, and Testing Methods
by Yange Wang, Bowen Zhang, Rongshuo Zhang, Yangbing Wei, Yunjing Wang and Rencheng Zhu
Atmosphere 2023, 14(5), 838; https://doi.org/10.3390/atmos14050838 - 8 May 2023
Cited by 3 | Viewed by 2520
Abstract
Microplastics (MPs) are receiving increasing attention because of their potential harm to the environment and human health. This research aims to summarize the abundance, toxicological effects, and analysis methods of MPs, as well as present their current status and trends in scientific research. [...] Read more.
Microplastics (MPs) are receiving increasing attention because of their potential harm to the environment and human health. This research aims to summarize the abundance, toxicological effects, and analysis methods of MPs, as well as present their current status and trends in scientific research. Bibliometric analysis confirmed a substantial rise in annual research papers on MPs, predominantly over the previous nine years. The central research areas relating to MPs include distribution, sources, toxic effects, analytical approaches, and adsorption of MPs with other pollutants. Airborne MPs are a primary source of microplastic pollution in remote areas. Humans may inhale and ingest MPs, leading to the accumulation of these particles in their bodies. Additionally, microplastics can have biological toxicity that poses a potential threat to human health. Standard procedures for sampling and both qualitative and quantitative analysis of microplastics in various environmental media must be established urgently to enable effective comparison of experimental conclusions. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

Back to TopTop