Tau Protein and Alzheimer’s disease

A special issue of Biomolecules (ISSN 2218-273X).

Deadline for manuscript submissions: closed (31 October 2015) | Viewed by 106424

Special Issue Editors


E-Mail Website
Guest Editor
TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UKSchool of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZP, UK
Interests: Alzheimer’s disease; frontotemporal dementia; clinical trials; tau protein
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Co-Guest Editor
TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UKSchool of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZP, UK
Interests: Alzheimer’s disease; neurodegeneration; tau protein; tau-based therapeutics; clinical trials
Special Issues, Collections and Topics in MDPI journals

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12872 KiB  
Communication
Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation
by Mathilde Wauters, Ruddy Wattiez and Laurence Ris
Biomolecules 2016, 6(3), 36; https://doi.org/10.3390/biom6030036 - 19 Aug 2016
Cited by 11 | Viewed by 5630
Abstract
Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be [...] Read more.
Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about small species of Tau. In this study, we hypothesized that the status of phosphorylation could alter the internalization of recombinant Tau in Neuro2A and cortical cells. Our preliminary results revealed that the highly phosphorylated form of Tau entered the cells ten times more easily than a low phosphorylated one. This suggests that hyperphosphorylated Tau protein could spread between neurons in pathological conditions such as Alzheimer’s disease. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
Show Figures

Figure 1

2962 KiB  
Article
Absence of a Role for Phosphorylation in the Tau Pathology of Alzheimer’s Disease
by Robert Y. K. Lai, Charles R. Harrington and Claude M. Wischik
Biomolecules 2016, 6(2), 19; https://doi.org/10.3390/biom6020019 - 8 Apr 2016
Cited by 19 | Viewed by 7252
Abstract
Alzheimer’s disease is characterized by redistribution of the tau protein pool from soluble to aggregated states. Aggregation forms proteolytically stable core polymers restricted to the repeat domain, and this binding interaction has prion-like properties. We have compared the binding properties of tau and [...] Read more.
Alzheimer’s disease is characterized by redistribution of the tau protein pool from soluble to aggregated states. Aggregation forms proteolytically stable core polymers restricted to the repeat domain, and this binding interaction has prion-like properties. We have compared the binding properties of tau and tubulin in vitro using a system in which we can measure binding affinities for proteins alternated between solid and aqueous phases. The study reveals that a phase-shifted repeat domain fragment from the Paired Helical Filament core contains all that is required for high affinity tau-tau binding. Unlike tau-tubulin binding, tau-tau binding shows concentration-dependent enhancement in both phase directions due to an avidity effect which permits one molecule to bind to many as the concentration in the opposite phase increases. Phosphorylation of tau inhibits tau-tau binding and tau-tubulin binding to equivalent extents. Tau-tau binding is favoured over tau-tubulin binding by factors in the range 19–41-fold, irrespective of phosphorylation status. A critical requirement for tau to become aggregation-competent is prior binding to a solid-phase substrate, which induces a conformational change in the repeat domain permitting high-affinity binding to occur even if tau is phosphorylated. The endogenous species enabling this nucleation event to occur in vivo remains to be identified. The findings of the study suggest that development of disease-modifying drugs for tauopathies should not target phosphorylation, but rather should target inhibitors of tau-tau binding or inhibitors of the binding interaction with as yet unidentified endogenous polyanionic substrates required to nucleate tau assembly. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
Show Figures

Graphical abstract

Review

Jump to: Research

633 KiB  
Review
Molecular Mechanisms in the Pathogenesis of Alzheimer’s disease and Tauopathies-Prion-Like Seeded Aggregation and Phosphorylation
by Masato Hasegawa
Biomolecules 2016, 6(2), 24; https://doi.org/10.3390/biom6020024 - 28 Apr 2016
Cited by 50 | Viewed by 10756
Abstract
Neurofibrillary tau pathology (tangles and threads) and extracellular amyloid-β (Aβ) pathology are defining features of Alzheimer’s disease. For 25 years, most research has focused on the amyloid hypothesis of AD pathogenesis and progression. But, because of failures in clinical trials of Aβ-targeted therapies [...] Read more.
Neurofibrillary tau pathology (tangles and threads) and extracellular amyloid-β (Aβ) pathology are defining features of Alzheimer’s disease. For 25 years, most research has focused on the amyloid hypothesis of AD pathogenesis and progression. But, because of failures in clinical trials of Aβ-targeted therapies and the new concept of prion-like propagation of intracellular abnormal proteins, tau has come back into the spotlight as a candidate therapeutic target in AD. Tau pathologies are found in a range of neurodegenerative disorders, but extensive analyses of pathological tau in diseased brains has demonstrated that the abnormal tau protein in each disease is structurally distinct, supporting the idea that progression of the diverse but characteristic tau pathologies occurs through prion-like seed-dependent aggregation. Therefore, intervention in the conversion of normal tau to abnormal forms and in cell-to-cell transmission of tau may be the key to development of disease-modifying therapies for AD and other dementing disorders. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
Show Figures

Figure 1

221 KiB  
Review
New Features about Tau Function and Dysfunction
by Miguel Medina, Félix Hernández and Jesús Avila
Biomolecules 2016, 6(2), 21; https://doi.org/10.3390/biom6020021 - 19 Apr 2016
Cited by 68 | Viewed by 8039
Abstract
Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a [...] Read more.
Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
934 KiB  
Review
Nuclear Tau and Its Potential Role in Alzheimer’s Disease
by Mahmoud Bukar Maina, Youssra K. Al-Hilaly and Louise C. Serpell
Biomolecules 2016, 6(1), 9; https://doi.org/10.3390/biom6010009 - 7 Jan 2016
Cited by 111 | Viewed by 15312
Abstract
Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer’s disease (AD). For nearly four decades, research efforts have focused more on tau’s role in physiology and pathology in the context of [...] Read more.
Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer’s disease (AD). For nearly four decades, research efforts have focused more on tau’s role in physiology and pathology in the context of the microtubules, even though, for over three decades, tau has been localised in the nucleus and the nucleolus. Its nuclear and nucleolar localisation had stimulated many questions regarding its role in these compartments. Data from cell culture, mouse brain, and the human brain suggests that nuclear tau could be essential for genome defense against cellular distress. However, its nature of translocation to the nucleus, its nuclear conformation and interaction with the DNA and other nuclear proteins highly suggest it could play multiple roles in the nucleus. To find efficient tau-based therapies, there is a need to understand more about the functional relevance of the varied cellular distribution of tau, identify whether specific tau transcripts or isoforms could predict tau’s localisation and function and how they are altered in diseases like AD. Here, we explore the cellular distribution of tau, its nuclear localisation and function and its possible involvement in neurodegeneration. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
Show Figures

Figure 1

3669 KiB  
Review
Characteristics of Tau and Its Ligands in PET Imaging
by Ryuichi Harada, Nobuyuki Okamura, Shozo Furumoto, Tetsuro Tago, Kazuhiko Yanai, Hiroyuki Arai and Yukitsuka Kudo
Biomolecules 2016, 6(1), 7; https://doi.org/10.3390/biom6010007 - 6 Jan 2016
Cited by 88 | Viewed by 12454
Abstract
Tau deposition is one of the neuropathological hallmarks in Alzheimer’s disease as well as in other neurodegenerative disorders called tauopathies. Recent efforts to develop selective tau radiopharmaceuticals have allowed the visualization of tau deposits in vivo. In vivo tau imaging allows the [...] Read more.
Tau deposition is one of the neuropathological hallmarks in Alzheimer’s disease as well as in other neurodegenerative disorders called tauopathies. Recent efforts to develop selective tau radiopharmaceuticals have allowed the visualization of tau deposits in vivo. In vivo tau imaging allows the assessment of the regional distribution of tau deposits in a single human subject over time for determining the pathophysiology of tau accumulation in aging and neurodegenerative conditions as well as for application in drug discovery of anti-dementia drugs as surrogate markers. However, tau deposits show complicated characteristics because of different isoform composition, histopathology, and ultrastructure in various neurodegenerative conditions. In addition, since tau radiopharmaceuticals possess different chemotype classes, they may show different binding characteristics with heterogeneous tau deposits. In this review, we describe the characteristics of tau deposits and their ligands that have β-sheet binding properties, and the status of tau imaging in clinical studies. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
Show Figures

Figure 1

3851 KiB  
Review
Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies
by Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan De Silva, Giuseppe Di Giovanni, Claude Wischik and Patrick R. Hof
Biomolecules 2016, 6(1), 6; https://doi.org/10.3390/biom6010006 - 6 Jan 2016
Cited by 497 | Viewed by 45292
Abstract
Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer’s disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of [...] Read more.
Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer’s disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of the microtubule-associated protein tau in the form of filaments. Based on the biochemically diverse range of pathological tau proteins, a number of approaches have been proposed to develop new potential therapeutics. Here we discuss some of the most promising ones: inhibition of tau phosphorylation, proteolysis and aggregation, promotion of intra- and extracellular tau clearance, and stabilization of microtubules. We also emphasize the need to achieve a full understanding of the biological roles and post-translational modifications of normal tau, as well as the molecular events responsible for selective neuronal vulnerability to tau pathology and its propagation. It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies. Full article
(This article belongs to the Special Issue Tau Protein and Alzheimer’s disease)
Show Figures

Graphical abstract

Back to TopTop