Molecular and Cellular Mechanisms of Lung Cancers

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cell Microenvironment".

Deadline for manuscript submissions: closed (31 October 2022) | Viewed by 51312

Special Issue Editor


E-Mail Website
Guest Editor
INSERM UMR 1307, CNRS UMR 6075, CRCI2NA, Nantes, France
Interests: endothelial cell; tumor microenvironment; cystic fibrosis; extracellular vesicles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Histological diagnosis distinguishes two major types: small-cell lung cancer (~15%) and non-small-cell lung cancer (~85%), of which adenocarcinoma, squamous cell carcinoma, and large cell carcinoma represent the main subtypes. Cigarette smoking is associated with all lung cancer subtypes, while mesothelioma, another thoracic cancer, has been linked to asbestos fiber exposure. Despite recent advances in the field, patient survival remains poor due to recurrence and the lack of diagnosis at an early stage. Thus, a better understanding of lung cancer biology is needed and might pave the way to the development of new therapeutics.

 We are pleased to invite all scientists working on thoracic cancers to contribute to this Special Issue. Original research articles, reviews, or shorter perspective articles on any aspect of the molecular and cellular mechanisms of lung tumorigenesis and therapy are welcome. Relevant topics include, but are not limited to: molecular and cellular heterogeneity, the tumor microenvironment, oncogenic signaling pathways, cellular communication, extracellular vesicles, angiogenesis, immunity, cancer stem-like cells, and metastasis. Finally, insights into mechanisms of therapy resistance, the evaluation of potential new targets, and the discovery of biomarkers will also be considered due to their translational potential.

Dr. Lucas Treps
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • NSCLC
  • SCLC
  • lung cancer
  • mesothelioma
  • squamous
  • adenocarcinoma
  • tumor microenvironment
  • immunity
  • angiogenesis
  • cellular communication
  • extracellular vesicles
  • exosomes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5394 KiB  
Article
Define the Two Molecular Subtypes of Epithelioid Malignant Pleural Mesothelioma
by Umair Ali Khan Saddozai, Fengling Wang, Saadullah Khattak, Muhammad Usman Akbar, Muhammad Badar, Nazeer Hussain Khan, Lu Zhang, Wan Zhu, Longxiang Xie, Yongqiang Li, Xinying Ji and Xiangqian Guo
Cells 2022, 11(18), 2924; https://doi.org/10.3390/cells11182924 - 19 Sep 2022
Cited by 4 | Viewed by 4014
Abstract
Malignant pleural mesothelioma (MPM) is a fatal disease of respiratory system. Despite the availability of invasive biomarkers with promising results, there are still significant diagnostic and therapeutic challenges in the treatment of MPM. One of three main mesothelioma cell types, epithelioid mesothelioma makes [...] Read more.
Malignant pleural mesothelioma (MPM) is a fatal disease of respiratory system. Despite the availability of invasive biomarkers with promising results, there are still significant diagnostic and therapeutic challenges in the treatment of MPM. One of three main mesothelioma cell types, epithelioid mesothelioma makes up approximately 70% of all mesothelioma cases. Different observational findings are under process, but the molecular heterogeneity and pathogenesis of epithelioid malignant pleural mesothelioma (eMPM) are still not well understood. Through molecular analysis, expression profiling data were used to determine the possibility and optimal number of eMPM molecular subtypes. Next, clinicopathological characteristics and different molecular pathways of each subtype were analyzed to prospect the clinical applications and advanced mechanisms of eMPM. In this study, we identified two distinct epithelioid malignant pleural mesothelioma subtypes with distinct gene expression patterns. Subtype I eMPMs were involved in steroid hormone biosynthesis, porphyrin and chlorophyll metabolism, and drug metabolism, while subtype II eMPMs were involved in rational metabolism, tyrosine metabolism, and chemical carcinogenesis pathways. Additionally, we identified potential subtype-specific therapeutic targets, including CCNE1, EPHA3, RNF43, ROS1, and RSPO2 for subtype I and CDKN2A and RET for subtype II. Considering the need for potent diagnostic and therapeutic biomarkers for eMPM, we are anticipating that our findings will help both in exploring underlying mechanisms in the development of eMPM and in designing targeted therapy for eMPM. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

23 pages, 5033 KiB  
Article
Aquaporin-6 May Increase the Resistance to Oxidative Stress of Malignant Pleural Mesothelioma Cells
by Giorgia Pellavio, Simona Martinotti, Mauro Patrone, Elia Ranzato and Umberto Laforenza
Cells 2022, 11(12), 1892; https://doi.org/10.3390/cells11121892 - 10 Jun 2022
Cited by 18 | Viewed by 2918
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer of the pleural surface and is associated with previous asbestos exposure. The chemotherapy drug is one of the main treatments, but the median survival ranges from 8 to 14 months from diagnosis. The redox homeostasis [...] Read more.
Malignant pleural mesothelioma (MPM) is an aggressive cancer of the pleural surface and is associated with previous asbestos exposure. The chemotherapy drug is one of the main treatments, but the median survival ranges from 8 to 14 months from diagnosis. The redox homeostasis of tumor cells should be carefully considered since elevated levels of ROS favor cancer cell progression (proliferation and migration), while a further elevation leads to ferroptosis. This study aims to analyze the functioning/role of aquaporins (AQPs) as a hydrogen peroxide (H2O2) channel in epithelial and biphasic MPM cell lines, as well as their possible involvement in chemotherapy drug resistance. Results show that AQP-3, -5, -6, -9, and -11 were expressed at mRNA and protein levels. AQP-6 was localized in the plasma membrane and intracellular structures. Compared to normal mesothelial cells, the water permeability of mesothelioma cells is not reduced by exogenous oxidative stress, but it is considerably increased by heat stress, making these cells resistant to ferroptosis. Functional experiments performed in mesothelioma cells silenced for aquaporin-6 revealed that it is responsible, at least in part, for the increase in H2O2 efflux caused by heat stress. Moreover, mesothelioma cells knocked down for AQP-6 showed a reduced proliferation compared to mock cells. Current findings suggest the major role of AQP-6 in providing mesothelioma cells with the ability to resist oxidative stress that underlies their resistance to chemotherapy drugs. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Graphical abstract

28 pages, 5463 KiB  
Article
Characterization of Extracellular Vesicles from Bronchoalveolar Lavage Fluid and Plasma of Patients with Lung Lesions Using Fluorescence Nanoparticle Tracking Analysis
by Magdalena Dlugolecka, Jacek Szymanski, Lukasz Zareba, Zuzanna Homoncik, Joanna Domagala-Kulawik, Malgorzata Polubiec-Kownacka and Malgorzata Czystowska-Kuzmicz
Cells 2021, 10(12), 3473; https://doi.org/10.3390/cells10123473 - 9 Dec 2021
Cited by 9 | Viewed by 4412
Abstract
The current lack of reliable methods for quantifying extracellular vesicles (EVs) isolated from complex biofluids significantly hinders translational applications in EV research. The recently developed fluorescence nanoparticle tracking analysis (FL-NTA) allows for the detection of EV-associated proteins, enabling EV content determination. In this [...] Read more.
The current lack of reliable methods for quantifying extracellular vesicles (EVs) isolated from complex biofluids significantly hinders translational applications in EV research. The recently developed fluorescence nanoparticle tracking analysis (FL-NTA) allows for the detection of EV-associated proteins, enabling EV content determination. In this study, we present the first comprehensive phenotyping of bronchopulmonary lavage fluid (BALF)-derived EVs from non-small cell lung cancer (NSCLC) patients using classical EV-characterization methods as well as the FL-NTA method. We found that EV immunolabeling for the specific EV marker combined with the use of the fluorescent mode NTA analysis can provide the concentration, size, distribution, and surface phenotype of EVs in a heterogeneous solution. However, by performing FL-NTA analysis of BALF-derived EVs in comparison to plasma-derived EVs, we reveal the limitations of this method, which is suitable only for relatively pure EV isolates. For more complex fluids such as plasma, this method appears to not be sensitive enough and the measurements can be compromised. Our parallel presentation of NTA-based phenotyping of plasma and BALF EVs emphasizes the great impact of sample composition and purity on FL-NTA analysis that has to be taken into account in the further development of FL-NTA toward the detection of EV-associated cancer biomarkers. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

18 pages, 5296 KiB  
Article
Irradiation Suppresses IFNγ-Mediated PD-L1 and MCL1 Expression in EGFR-Positive Lung Cancer to Augment CD8+ T Cells Cytotoxicity
by Chun-I. Wang, Yi-Fang Chang, Zong-Lin Sie, Ai-Sheng Ho, Jung-Shan Chang, Cheng-Liang Peng and Chun-Chia Cheng
Cells 2021, 10(10), 2515; https://doi.org/10.3390/cells10102515 - 23 Sep 2021
Cited by 3 | Viewed by 3056
Abstract
Tumor cells express immune checkpoints to exhaust CD8+ T cells. Irradiation damages tumor cells and augments tumor immunotherapy in clinical applications. However, the radiotherapy-mediated molecular mechanism affecting CD8+ T cell activity remains elusive. We aimed to uncover the mechanism of radiotherapy [...] Read more.
Tumor cells express immune checkpoints to exhaust CD8+ T cells. Irradiation damages tumor cells and augments tumor immunotherapy in clinical applications. However, the radiotherapy-mediated molecular mechanism affecting CD8+ T cell activity remains elusive. We aimed to uncover the mechanism of radiotherapy augmenting cytotoxic CD8+ T cells in non-small-cell lung cancer (NSCLC). EGFR-positive NSCLC cell lines were co-cultured with CD8+ T cells from healthy volunteers. Tumor cell viability and apoptosis were consequently measured. IFNγ was identified secreted by CD8+ T cells and PBMCs. Therefore, RNAseq was used to screen the IFNγ-mediated gene expression in A549 cells. The irradiation effect to IFNγ-mediated gene expression was investigated using qPCR and western blots. We found that the co-culture of tumor cells stimulated the increase of granzyme B and IFNγ in CD8+ T, but A549 exhibited resistance against CD8+ T cytotoxicity compared to HCC827. Irradiation inhibited A549 proliferation and enhanced apoptosis, augmenting PBMCs-mediated cytotoxicity against A549. We found that IFNγ simultaneously increased phosphorylation on STAT1 and STAT3 in EGFR-positive lung cancer, resulting in overexpression of PD-L1 (p < 0.05). In RNAseq analysis, MCL1 was identified and increased by the IFNγ-STAT3 axis (p < 0.05). We demonstrated that irradiation specifically inhibited phosphorylation on STAT1 and STAT3 in IFNγ-treated A549, resulting in reductions of PD-L1 and MCL1 (both p < 0.05). Moreover, knockdowns of STAT3 and MCL1 increased the PBMCs-mediated anti-A549 effect. This study demonstrated that A549 expressed MCL1 to resist CD8+ T cell-mediated tumor apoptosis. In addition, we found that irradiation suppressed IFNγ-mediated STAT3 phosphorylation and PD-L1 and MCL1 expression, revealing a potential mechanism of radiotherapy augmenting immune surveillance. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

13 pages, 3339 KiB  
Article
YTHDF1 Promotes Cyclin B1 Translation through m6A Modulation and Contributes to the Poor Prognosis of Lung Adenocarcinoma with KRAS/TP53 Co-Mutation
by Xiaoying Lou, Jinfeng Ning, Wei Liu, Kexin Li, Benheng Qian, Danfei Xu, Yue Wu, Donghong Zhang and Wei Cui
Cells 2021, 10(7), 1669; https://doi.org/10.3390/cells10071669 - 2 Jul 2021
Cited by 25 | Viewed by 3305
Abstract
KRAS and TP53 mutations are the two most common driver mutations in patients with lung adenocarcinoma (LUAD), and they appear to reduce latency and increase metastatic proclivity when a KRAS and TP53 co-mutation (KRAS/TP53-mut) occurs. However, the molecular mechanism involved is unclear. N [...] Read more.
KRAS and TP53 mutations are the two most common driver mutations in patients with lung adenocarcinoma (LUAD), and they appear to reduce latency and increase metastatic proclivity when a KRAS and TP53 co-mutation (KRAS/TP53-mut) occurs. However, the molecular mechanism involved is unclear. N6-methyladenosine (m6A), the most abundant RNA modification in mammal mRNAs, plays a critical role in tumorigenesis. Here, we used genomic and transcriptomic data and found that only LUAD patients with KRAS/TP53-mut, but not an individual mutation, appeared to exhibit poor overall survival when compared with patients without KRAS and TP53 mutation (wildtype). Subsequently, we analyzed the differential expression of the 15-m6A-related genes in LUAD with different mutations and found that YTHDF1 was the most upregulated in KRAS/TP53-mut patients and associated with their adverse prognosis. Bioinformatics and experimental evidence indicated that elevated YTHDF1 functionally promoted the translation of cyclin B1 mRNA in an m6A-dependent manner, thereby facilitating the tumor proliferation and poor prognosis of LUAD with KRAS/TP53-mut. Furthermore, the concurrent increase in YTHDF1 and cyclin B1 was confirmed by immunohistochemistry staining in patients with co-occurring KRAS/TP53 mutations. YTHDF1 was correlated with an unfavorable clinical stage and tumor size. Collectively, we identified and confirmed a novel “YTHDF1–m6A–cyclin B1 translation” axis as an essential molecular pathway for the prognosis of KRAS/TP53-mut LUAD. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

16 pages, 4633 KiB  
Article
Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells
by Alexis Rugamba, Dong Young Kang, Nipin Sp, Eun Seong Jo, Jin-Moo Lee, Se Won Bae and Kyoung-Jin Jang
Cells 2021, 10(7), 1632; https://doi.org/10.3390/cells10071632 - 29 Jun 2021
Cited by 35 | Viewed by 4175
Abstract
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This [...] Read more.
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2642 KiB  
Review
STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact
by Elvire Pons-Tostivint, Alexandre Lugat, Jean-François Fontenau, Marc Guillaume Denis and Jaafar Bennouna
Cells 2021, 10(11), 3129; https://doi.org/10.3390/cells10113129 - 11 Nov 2021
Cited by 36 | Viewed by 12335
Abstract
The STK11/LKB1 gene codes for liver kinase B1 (STK11/LKB1), a highly conserved serine/threonine kinase involved in many energy-related cellular processes. The canonical tumor-suppressive role for STK11/LKB1 involves the activation of AMPK-related kinases, a master regulator of cell survival during stress conditions. [...] Read more.
The STK11/LKB1 gene codes for liver kinase B1 (STK11/LKB1), a highly conserved serine/threonine kinase involved in many energy-related cellular processes. The canonical tumor-suppressive role for STK11/LKB1 involves the activation of AMPK-related kinases, a master regulator of cell survival during stress conditions. In pre-clinical models, inactivation of STK11/LKB1 leads to the progression of lung cancer with the acquisition of metastatic properties. Moreover, preclinical and clinical data have shown that inactivation of STK11/LKB1 is associated with an inert tumor immune microenvironment, with a reduced density of infiltrating cytotoxic CD8+ T lymphocytes, a lower expression of PD-(L)1, and a neutrophil-enriched tumor microenvironment. In this review, we first describe the biological function of STK11/LKB1 and the role of its inactivation in cancer cells. We report descriptive epidemiology, co-occurring genomic alterations, and prognostic impact for lung cancer patients. Finally, we discuss recent data based on pre-clinical models and lung cancer cohorts analyzing the results of STK11/LKB1 alterations on the immune system and response or resistance to immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

19 pages, 493 KiB  
Review
Research Progress and Challenges in the Treatment of Central Nervous System Metastasis of Non-Small Cell Lung Cancer
by Bin Wang, Hanfei Guo, Haiyang Xu, Hongquan Yu, Yong Chen and Gang Zhao
Cells 2021, 10(10), 2620; https://doi.org/10.3390/cells10102620 - 1 Oct 2021
Cited by 18 | Viewed by 3107
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors and has high morbidity and mortality rates. Central nervous system (CNS) metastasis is one of the most frequent complications in patients with NSCLC and seriously affects the quality of life [...] Read more.
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors and has high morbidity and mortality rates. Central nervous system (CNS) metastasis is one of the most frequent complications in patients with NSCLC and seriously affects the quality of life (QOL) and overall survival (OS) of patients, with a median OS of untreated patients of only 1–3 months. There are various treatment methods for NSCLC CNS metastasis, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, which do not meet the requirements of patients in terms of improving OS and QOL. There are still many problems in the treatment of NSCLC CNS metastasis that need to be solved urgently. This review summarizes the research progress in the treatment of NSCLC CNS metastasis to provide a reference for clinical practice. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

15 pages, 1322 KiB  
Review
EGFR Status Assessment for Better Care of Early Stage Non-Small Cell Lung Carcinoma: What Is Changing in the Daily Practice of Pathologists?
by Paul Hofman
Cells 2021, 10(8), 2157; https://doi.org/10.3390/cells10082157 - 21 Aug 2021
Cited by 5 | Viewed by 3547
Abstract
The recent emergence of novel neoadjuvant and/or adjuvant therapies for early stage (I-IIIA) non-small cell lung carcinoma (NSCLC), mainly tyrosine kinase inhibitors (TKIs) targeting EGFR mutations and immunotherapy or chemo-immunotherapy, has suddenly required the evaluation of biomarkers predictive of the efficacy of different [...] Read more.
The recent emergence of novel neoadjuvant and/or adjuvant therapies for early stage (I-IIIA) non-small cell lung carcinoma (NSCLC), mainly tyrosine kinase inhibitors (TKIs) targeting EGFR mutations and immunotherapy or chemo-immunotherapy, has suddenly required the evaluation of biomarkers predictive of the efficacy of different treatments in these patients. Currently, the choice of one or another of these treatments mainly depends on the results of immunohistochemistry for PD-L1 and of the status of EGFR and ALK. This new development has led to the setup of different analyses for clinical and molecular pathology laboratories, which have had to rapidly integrate a number of new challenges into daily practice and to establish new organization for decision making. This review outlines the impact of the management of biological samples in laboratories and discusses perspectives for pathologists within the framework of EGFR TKIs in early stage NSCLC. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

17 pages, 1832 KiB  
Review
Perspectives and Issues in the Assessment of SMARCA4 Deficiency in the Management of Lung Cancer Patients
by Subasri Armon, Paul Hofman and Marius Ilié
Cells 2021, 10(8), 1920; https://doi.org/10.3390/cells10081920 - 29 Jul 2021
Cited by 26 | Viewed by 8668
Abstract
Lung cancers are ranked third among the cancer incidence in France in the year 2020, with adenocarcinomas being the commonest sub-type out of ~85% of non-small cell lung carcinomas. The constant evolution of molecular genotyping, which is used for the management of lung [...] Read more.
Lung cancers are ranked third among the cancer incidence in France in the year 2020, with adenocarcinomas being the commonest sub-type out of ~85% of non-small cell lung carcinomas. The constant evolution of molecular genotyping, which is used for the management of lung adenocarcinomas, has led to the current focus on tumor suppressor genes, specifically the loss of function mutation in the SMARCA4 gene. SMARCA4-deficient adenocarcinomas are preponderant in younger aged male smokers with a predominant solid morphology. The importance of identifying SMARCA4-deficient adenocarcinomas has gained interest for lung cancer management due to its aggressive behavior at diagnosis with vascular invasion and metastasis to the pleura seen upon presentation in most cases. These patients have poor clinical outcome with short overall survival rates, regardless of the stage of disease. The detection of SMARCA4 deficiency is possible in most pathology labs with the advent of sensitive and specific immunohistochemical antibodies. The gene mutations can be detected together with other established lung cancer molecular markers based on the current next generation sequencing panels. Sequencing will also allow the identification of associated gene mutations, notably KRAS, KEAP1, and STK11, which have an impact on the overall survival and progression-free survival of the patients. Predictive data on the treatment with anti-PD-L1 are currently uncertain in this high tumor mutational burden cancer, which warrants more groundwork. Identification of target drugs is also still in pre-clinical testing. Thus, it is paramount to identify the SMARCA4-deficient adenocarcinoma, as it carries worse repercussions on patient survival, despite having an exceptionally low prevalence. Herein, we discuss the pathophysiology of SMARCA4, the clinicopathological consequences, and different detection methods, highlighting the perspectives and challenges in the assessment of SMARCA4 deficiency for the management of non-small cell lung cancer patients. This is imperative, as the contemporary shift on identifying biomarkers associated with tumor suppressor genes such as SMARCA4 are trending; hence, awareness of pathologists and clinicians is needed for the SMARCA4-dNSCLC entity with close follow-up on new management strategies to overcome the poor possibilities of survival in such patients. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lung Cancers)
Show Figures

Figure 1

Back to TopTop