Advanced Biomaterials, Coatings and Techniques: Applications in Medicine and Dentistry

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Surface Coatings for Biomedicine and Bioengineering".

Deadline for manuscript submissions: 20 March 2025 | Viewed by 22510

Special Issue Editors


E-Mail Website
Guest Editor
Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
Interests: dental materials/biomaterials; alloys; ceramics; thermoplastic resins; 3D printing/bioprinting; CAD/CAM milling; corrosion evaluation; welding; scanning; coating; oral health; dental caries
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
Interests: oral medicine; oral pathology; dental materials; nanomaterials; biomaterials; oral microbiome; oral biofilm; oral cancer; nanomedicine; oral microenvironment; oral biomarkers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is our pleasure to invite you to submit a manuscript to the Special Issue “Advanced Biomaterials, Coatings and Techniques: Applications in Medicine and Dentistry”.

The field of biomaterials is a very extensive one, encompassing both the materials themselves and their manufacturing methods, which are constantly developing.

The use of biomaterials for medical and oral applications is associated with specific issues concerning their biocompatibility, bio-integration, antimicrobial properties, corrosion resistance and long-term performance, as a consequence of their close contact with human tissues. In the field of regenerative medicine, biomaterials are of great importance when used as scaffolds to promote cell growth and differentiation, resulting in the healing of tissue lesions.

Coatings play an important role in achieving the most crucial properties of biomaterials through surface modification, making them suitable for medical and oral applications.

The aim of this Special Issue is to provide an updated outlook on the applications of biomaterials and coatings in medicine and dentistry, as well as presenting innovative manufacturing technologies. It represents a good opportunity for researchers and scholars worldwide to disseminate different aspects of their work and reporting the results related to this topic. Research articles, reviews, and communications are equally invited for this Special Issue.

Prof. Dr. Lavinia Cosmina Ardelean
Prof. Dr. Laura-Cristina Rusu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • dental materials
  • orthopedic materials
  • protective coatings
  • bioactive coatings
  • antibacterial coatings
  • regenerative medicine

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 202 KiB  
Editorial
Advanced Biomaterials, Coatings, and Techniques: Applications in Medicine and Dentistry
by Lavinia Cosmina Ardelean and Laura-Cristina Rusu
Coatings 2022, 12(6), 797; https://doi.org/10.3390/coatings12060797 - 8 Jun 2022
Viewed by 1801
Abstract
The field of biomaterials is very extensive, encompassing both the materials themselves and the manufacturing methods, which are constantly developing [...] Full article

Research

Jump to: Editorial, Review

11 pages, 6877 KiB  
Article
Self-Etching Ceramic Primer Application Time Influences Durability of Bonding to Lithium Disilicate and Advanced Lithium Disilicate Ceramics
by Ashwaq Alsolami and Khaled M. Alzahrani
Coatings 2024, 14(11), 1461; https://doi.org/10.3390/coatings14111461 - 17 Nov 2024
Viewed by 337
Abstract
Background: Monobond Etch & Prime (MEP; Ivoclar) has a material-dependent effect on dental ceramics. This study evaluated the impact of MEP application time on the resin–ceramic shear bond strength (SBS) of lithium disilicate (LD) and advanced lithium disilicate (ALD) ceramics. Methods: LD and [...] Read more.
Background: Monobond Etch & Prime (MEP; Ivoclar) has a material-dependent effect on dental ceramics. This study evaluated the impact of MEP application time on the resin–ceramic shear bond strength (SBS) of lithium disilicate (LD) and advanced lithium disilicate (ALD) ceramics. Methods: LD and ALD discs were distributed into four groups (n = 20): no surface treatment; 5% HF etching followed by the application of a silane-containing primer (S); MEP applied for 40 s and maintained for 20 s; MEP applied for 2 min and maintained for 40 s. Resin–ceramic SBS was evaluated at 24 h and after thermocycling. The statistical analysis of SBS was performed by using the three-way ANOVA and Tukey’s multiple comparisons tests. Additional ceramic samples were prepared to assess the surface topography. Results: There was no statistically significant difference in the SBS of the MEP groups (20 s and 2 min) and HF + S. However, only the HF + S and MEP (2 min) groups showed durable adhesion after thermocycling. MEP resulted in less distinct surface alterations compared with HF etching. Conclusion: Increasing the application time of MEP to 2 min resulted in more durable resin–ceramic adhesion compared with the application time (40 s) recommended by the manufacturer. The adhesion of resin–ceramic to LD and ALD did not significantly differ. Full article
Show Figures

Figure 1

19 pages, 2591 KiB  
Article
Amantadine-Heparin-Polypyrrole as a Promising Drug Delivery Reservoir with a Biological Approach
by Sara Kulik, Sylwia Golba, Izabela Matuła, Ewa Stodolak-Zych and Roksana Kurpanik
Coatings 2024, 14(11), 1389; https://doi.org/10.3390/coatings14111389 - 31 Oct 2024
Viewed by 572
Abstract
There is an urgent need to alleviate the symptoms of neurodegenerative diseases. The presented work includes the use of electrochemical polymerization (CV) to obtain active polypyrrole layers with incorporated molecules of a neurological drug substance—amantadine hydrochloride. The obtained films were characterized chemically, structurally, [...] Read more.
There is an urgent need to alleviate the symptoms of neurodegenerative diseases. The presented work includes the use of electrochemical polymerization (CV) to obtain active polypyrrole layers with incorporated molecules of a neurological drug substance—amantadine hydrochloride. The obtained films were characterized chemically, structurally, and functionally in terms of their use as a drug delivery systems which are neurologically active. FTIR spectra were recorded to identify the incorporation of drug substances into the matrix. The obtained results showed that amantadine and heparin were embedded to the polypyrrole matrix. Scanning electron microscopy (SEM) was used to examine the morphology of the films. The films deposited on the steel substrate showed a compact, smooth structure, where there was no visible organized structure. After release, the film became corrugated. Adhesive tests were conducted with the cross-cut Test Method B to determine the mechanical properties, and the results showed that amantadine improves adhesion for steel substrates. The films were potentially stimulated by chronoamperometry, and UV-Vis spectra were registered to calculate the concentration of AMA in the solution after release. The release curves indicate a 95% efficiency of AMA release over the studied time period and protocol. Later, antibacterial properties were tested. The proposed system was able to provide a daily dose of drugs that ensures a therapeutic effect. This is a significant step towards developing systems capable of delivering a wider range of doses, potentially in line with the full spectrum recommended for therapeutic efficacy. The antibacterial properties of the material allows it to be considered as a material with antibacterial potential in the presence of the Staphylococcus aureus (S. aureus) strain. The percentage reduction ratio indicates a 90–100% reduction of bacteria in the suspension. Full article
Show Figures

Figure 1

16 pages, 3979 KiB  
Article
The Combination of Decellularized Cartilage and Amniotic Membrane Matrix Enhances the Production of Extracellular Matrix Elements in Human Chondrocytes
by Antonio Rojas-Murillo, Jorge Lara-Arias, Héctor Leija-Gutiérrez, Rodolfo Franco-Márquez, Nidia Karina Moncada-Saucedo, Abel Guzmán-López, Félix Vilchez-Cavazos, Elsa Nancy Garza-Treviño and Mario Simental-Mendía
Coatings 2024, 14(9), 1083; https://doi.org/10.3390/coatings14091083 - 23 Aug 2024
Viewed by 1023
Abstract
Articular cartilage lesions are challenging to regenerate, prompting the investigation of novel biomaterial-based therapeutic approaches. Extracellular matrix (ECM)-derived biomaterials are a promising option for this purpose; however, to date, the combination of amniotic membrane (AMM) and articular cartilage (ACM) has not been tested. [...] Read more.
Articular cartilage lesions are challenging to regenerate, prompting the investigation of novel biomaterial-based therapeutic approaches. Extracellular matrix (ECM)-derived biomaterials are a promising option for this purpose; however, to date, the combination of amniotic membrane (AMM) and articular cartilage (ACM) has not been tested. This study evaluated different concentrations of soluble extracts from the decellularized ECM of amniotic membrane (dAMM) and articular cartilage (dACM), both individually and in combination, to determine their ability to maintain the chondrogenic phenotype in human chondrocytes. After the decellularization process 90–99% of the cellular components were removed, it retains nearly 100% of type 2 collagen and 70% of aggrecan (ACAN) for dACM, and approximately 90% of type IV collagen and 75% of ACAN for dAMM. The biological activity of soluble extracts from dACM and dAMM were evaluated on human chondrocytes. After 72 h, 1.5 mg/mL of dACM and 6 mg/mL of dAMM significantly increased (p < 0.05) the proliferation and expression of SOX9 and ACAN. Also, the combination of both (1.5 mg/mL dACM and 6 mg/mL dAMM) showed synergistic effects, enhancing chondrocyte proliferation, maintaining chondrogenic lineage, and increasing the production of cartilage ECM components, such as COLII (1.5-fold), SOX9 (2-fold), and ACAN (2-fold). These results suggest that the combined use of dACM and dAMM has potential for cartilage regeneration. Full article
Show Figures

Figure 1

16 pages, 5701 KiB  
Article
In Vitro Evaluation of Optimized PEEK Surfaces for Enhanced Osseointegration
by Kadie Nobles, Amol V. Janorkar, Michael D. Roach, Lawrence Walker and Randall Scott Williamson
Coatings 2024, 14(5), 518; https://doi.org/10.3390/coatings14050518 - 23 Apr 2024
Viewed by 1038
Abstract
The materials traditionally used for implant applications, such as titanium alloys, cobalt chromium, and zirconium, often require surface modifications to achieve the desired osseointegration. These materials still have the problematic stress-shielding effect. To limit stress shielding, PEEK is the superior alternative to fulfill [...] Read more.
The materials traditionally used for implant applications, such as titanium alloys, cobalt chromium, and zirconium, often require surface modifications to achieve the desired osseointegration. These materials still have the problematic stress-shielding effect. To limit stress shielding, PEEK is the superior alternative to fulfill implant needs. However, the traditional methods of modifying and functionalizing the surface of PEEK are often expensive, time consuming, and are not easily translated into commercialization. Sulfonation is a process, which is dependent on controllable factors. Thus far, no research has been performed to optimize the sulfonation process. Our data suggest that the process factors can be controlled and optimized. Cellular activity was examined on the optimized PEEK surfaces through testing with pre-osteoblast MC3T3-E1 cells through cell viability (MTT assay), cell proliferation (DNA assay), cell differentiation (ALP assay), and cell mineralization (Alizarin red assay). Overall, sulfonated and heat-treated PEEK exhibited a statistically significant increase in DNA content over the course of 21 days, indicating more cell proliferation and viability for that surface. In vitro testing results showed that the optimized sulfonated and heat-treated PEEK exhibited superior cell proliferation and mineralization performance over smooth PEEK and sulfonated-only PEEK. Full article
Show Figures

Figure 1

10 pages, 1358 KiB  
Article
Evaluation of the Cyclic Fatigue Resistance of Tia Tornado Blue and Tia Tornado Gold in Curved Canals: In Vitro Study
by Ziyad Allahem, Mohammad Bendahmash, Reem Almeaither, Hussam Alfawaz and Abdullah Alqedairi
Coatings 2024, 14(1), 15; https://doi.org/10.3390/coatings14010015 - 22 Dec 2023
Cited by 2 | Viewed by 1282
Abstract
(1) Background: The aim of this study was to investigate the cyclic fatigue behavior of the newly introduced endodontic instrument systems Tia Tornado Blue and Tia Tornado Gold. (2) Methods: The tested rotary instruments were divided according to their type into four groups [...] Read more.
(1) Background: The aim of this study was to investigate the cyclic fatigue behavior of the newly introduced endodontic instrument systems Tia Tornado Blue and Tia Tornado Gold. (2) Methods: The tested rotary instruments were divided according to their type into four groups as follows: Tia Tornado Blue (TTB), Tia Tornado Gold (TTG), Protaper Gold (PTG), and Vortex Blue (VB). The cyclic fatigue resistance of fifteen instruments of each group, totaling 60, was tested. Each instrument was rotated under continuous motion inside an artificial canal at simulated body temperature at the speed recommended by the manufacturer until fracture. The time to fracture was recorded, and the number of cycles to fracture (NCF) was calculated for each instrument. Additionally, the fractured segment length was calculated, and scanning electron microscopic (SEM) images were captured of the fractured surfaces. (3) Results: Statistical analysis revealed that the VB significantly had the highest NCF followed by the PTG, TTG, and TTB (p < 0.05). The lengths of the fractured segments were found to be similar among the tested instrument, which ranged from 4.42 to 4.86 mm (p > 0.05). SEM images exhibited the typical features of cyclic fatigue. (4) Conclusions: The newly introduced instruments, TTG and TTB, exhibited a significantly lower resistance to cyclic fatigue compared to the PTG and VB rotary instruments. Full article
Show Figures

Figure 1

19 pages, 8050 KiB  
Article
Galvanic Deposition of Calcium Phosphate/Bioglass Composite Coating on AISI 316L
by Claudio Zanca, Alessandro Milazzo, Simona Campora, Elisa Capuana, Francesco Carfì Pavia, Bernardo Patella, Francesco Lopresti, Valerio Brucato, Vincenzo La Carrubba and Rosalinda Inguanta
Coatings 2023, 13(6), 1006; https://doi.org/10.3390/coatings13061006 - 29 May 2023
Cited by 1 | Viewed by 1799
Abstract
Calcium phosphate/Bioglass composite coatings on AISI 316L were investigated with regard to their potential role as a beneficial coating for orthopedic implants. These coatings were realized by the galvanic co-deposition of calcium phosphate compounds and Bioglass particles. A different amount of Bioglass 45S5 [...] Read more.
Calcium phosphate/Bioglass composite coatings on AISI 316L were investigated with regard to their potential role as a beneficial coating for orthopedic implants. These coatings were realized by the galvanic co-deposition of calcium phosphate compounds and Bioglass particles. A different amount of Bioglass 45S5 was used to study its effect on the performance of the composite coatings. The morphology and chemical composition of the coatings were investigated before and after their aging in simulated body fluid. The coatings uniformly covered the AISI 316L substrate and consisted of a brushite and hydroxyapatite mixture. Both phases were detected using X-ray diffraction and Raman spectroscopy. Additionally, both analyses revealed that brushite is the primary phase. The presence of Bioglass was verified through energy-dispersive X-ray spectroscopy, which showed the presence of a silicon peak. During aging in simulated body fluid, the coating was subject to a dynamic equilibrium of dissolution/reprecipitation with total conversion in only the hydroxyapatite phase. Corrosion tests performed in simulated body fluid at different aging times revealed that the coatings made with 1 g/L of Bioglass performed best. These samples have a corrosion potential of −0.068V vs. Ag/AgCl and a corrosion current density of 8.87 × 10−7 A/cm2. These values are better than those measured for bare AISI 316L (−0.187 V vs. Ag/AgCl and 2.52 × 10−6 A/cm2, respectively) and remained superior to pure steel for all 21 days of aging. This behavior indicated the good protection of the coating against corrosion phenomena, which was further confirmed by the very low concentration of Ni ions (0.076 ppm) released in the aging solution after 21 days of immersion. Furthermore, the absence of cytotoxicity, verified through cell viability assays with MC3T3-E1 osteoblastic cells, proves the biocompatibility of the coatings. Full article
Show Figures

Graphical abstract

18 pages, 8244 KiB  
Article
EIS and LEIS Study on In Vitro Corrosion Resistance of Anodic Oxide Nanotubes on Ti–13Zr–13Nb Alloy in Saline Solution
by Bożena Łosiewicz, Agnieszka Stróż, Julian Kubisztal, Patrycja Osak and Maciej Zubko
Coatings 2023, 13(5), 875; https://doi.org/10.3390/coatings13050875 - 6 May 2023
Cited by 3 | Viewed by 1639
Abstract
This work concerns the search for new ways to modify the surface of the biomedical Ti–13Zr–13Nb alloy for applications in regenerative medicine and personalized medicine. Obtained for the first time, oxide nanotubes (ONTs) layers of first-generation (1G) on a Ti–13Zr–13Nb alloy were produced [...] Read more.
This work concerns the search for new ways to modify the surface of the biomedical Ti–13Zr–13Nb alloy for applications in regenerative medicine and personalized medicine. Obtained for the first time, oxide nanotubes (ONTs) layers of first-generation (1G) on a Ti–13Zr–13Nb alloy were produced by anodizing in 0.5% HF electrolyte at 20 V for 120 min. The physico-chemical characterization of the obtained bamboo-inspired 1G ONTs was conducted using TEM and ATR-FTIR methods. In vitro corrosion resistance of the 1G ONTs and comparative Ti–13Zr–13Nb substrate in saline solution at 37 °C was conducted by open-circuit potential, Tafel curves, anodic polarization curves, and EIS methods. LEIS and SVET study of local corrosion resistance was also carried out. It was found that surface modification by anodizing of the Ti–13Zr–13Nb alloy under proposed conditions allowed to obtain porous ONTs highly resistant to pitting corrosion. The obtained results give a new insight into the relationship between the morphological parameters of first-generation oxide nanotubes and in vitro corrosion resistance of the Ti–13Zr–13Nb alloy in saline solution at the macro- and microscale. Full article
Show Figures

Figure 1

11 pages, 1695 KiB  
Article
Silane-Containing Universal Adhesives Influence Resin-Ceramic Microtensile Bond Strength
by Mohamed M. Awad, Feras Alhalabi, Abdullah Alshehri, Mohammed Ali Salem, Ali Robaian, Shahad Alghannam, Abdullah S. Alayad, Basil Almutairi and Ali Alrahlah
Coatings 2023, 13(2), 477; https://doi.org/10.3390/coatings13020477 - 20 Feb 2023
Cited by 3 | Viewed by 2928
Abstract
Background: Silane-containing universal adhesives (UAs) are marketed as adhesion promotors for glass-ceramics. Objectives: This study aimed to evaluate the priming capacity of γ-methacryloxypropyltrimethoxysilane (γMPTS)-containing and γ-methacryloxypropyltriethoxysilane (γMPTES)/3-(aminopropyl)triethoxysilane (APTES)-containing universal adhesives (UAs) for lithium disilicate ceramic (LDC). Materials and Methods: Etched LDC discs were [...] Read more.
Background: Silane-containing universal adhesives (UAs) are marketed as adhesion promotors for glass-ceramics. Objectives: This study aimed to evaluate the priming capacity of γ-methacryloxypropyltrimethoxysilane (γMPTS)-containing and γ-methacryloxypropyltriethoxysilane (γMPTES)/3-(aminopropyl)triethoxysilane (APTES)-containing universal adhesives (UAs) for lithium disilicate ceramic (LDC). Materials and Methods: Etched LDC discs were distributed into four groups according to the priming material used: (control), no priming; (MBN), LDC was primed with a universal primer (Monobond N); (SBU), γMPTS-containing UA (Single Bond Universal Adhesive) was used as a primer; and (SBP), γMPTES/APTES-containing UA (Scotchbond Universal Plus Adhesive) was used as a primer. LDC discs were cemented using a dual-cure resin cement, then sectioned into microbeams for microtensile bond strength (μTBS) evaluation. Failure modes were assessed. Results: MBN application showed the highest μTBS among all groups. γMPTES/APTES-containing UA (SBP) resulted in considerably higher μTBS compared with γMPTS-containing UA (SBU) or the control group. The mixed failures were the most predominant among all groups. Conclusions: The effect of silane-containing UAs on resin-ceramic μTBS is material dependent. Although γMPTES/APTES-containing UA improved bonding to LDC, the priming of LDC with either of the UAs tested cannot be considered as an alternative to a separate silanization (priming) step using a universal primer. Full article
Show Figures

Figure 1

10 pages, 685 KiB  
Article
Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study
by Raif Murat Demircioglu, Orhan Cicek, Fusun Comert and Hande Erener
Coatings 2023, 13(2), 401; https://doi.org/10.3390/coatings13020401 - 9 Feb 2023
Cited by 6 | Viewed by 1725
Abstract
(1) Objective: The aim of this study was to compare the demineralization around brackets bonded with different types of adhesive agents in a cariogenic suspension environment. (2) Methods: In the study, 60 extracted upper first premolar teeth were divided into three groups with [...] Read more.
(1) Objective: The aim of this study was to compare the demineralization around brackets bonded with different types of adhesive agents in a cariogenic suspension environment. (2) Methods: In the study, 60 extracted upper first premolar teeth were divided into three groups with 20 teeth in each group. In Group 1, Transbond XT Primer + Transbond XT Light Cure Adhesive (3M Unitek, Monrovia, CA, USA), in Group 2, GC Ortho Connect Light Cure Adhesive (GC Crop, Tokyo, Japan) and in Group 3, Transbond™ Plus Self Etching Primer + Transbond XT Light Cure Adhesive (3M Unitek, Monrovia, CA, USA) adhesive agents were used. In Group 1 and 2, buccal enamel surfaces were etched for 30 s, washed for 15 s and dried for 15 s. All groups were bonded with Gemini metal (3M Unitek, Monrovia, CA, USA) brackets. Gingival, occlusal and proximal enamel surfaces of the brackets were measured with a DIAGNOdent pen (KaVo, Biberach, Germany), and demineralization values were recorded. Measurements were performed after bracketing (T0) and after 28 days in a cariogenic environment (T1), which was renewed every 48 h. The Kolmogorov–Smirnov test was used to determine whether or not the data were homogeneously distributed, the Wilcoxon test was used for comparisons within groups, and the Mann–Whitney U and Kruskal–Wallis tests were used for comparisons between groups. (3) Results: In all groups, demineralization values on all enamel surfaces of the brackets were found to be statistically significantly higher in the T1 period than in the T0 period (p < 0.05). In the T1 period, demineralization values of occlusal enamel surfaces in Groups 1 and 2 were found to be significantly higher than in Group 3 (p < 0.05). The amount of increase in occlusal enamel surface demineralization value between T0 and T1 periods in Groups 1 and 2 was significantly higher than in Group 3 (p < 0.05). There was no statistically significant difference in demineralization values of proximal and gingival enamel surfaces between the groups in the T1 period (p > 0.05). (4) Conclusion: Significantly less occlusal enamel surface demineralization was observed in teeth in which the Transbond™ Plus Self Etching Primer adhesive agent was not applied with acid etching. Full article
Show Figures

Figure 1

13 pages, 4234 KiB  
Article
Coralline Hydroxyapatite Coated with a Layer Biomimetic Calcium Phosphate Containing BMP-2 Induces Dose-Related Ectopic Bone Formation in Wistar Rats
by Henri J. J. Uijlenbroek, Xingnan Lin, Xin Zhang, Liquan Deng, Daniel Wismeijer, Mingjie Wang, Lingfei Wei, Yuanna Zheng and Yuelian Liu
Coatings 2021, 11(10), 1195; https://doi.org/10.3390/coatings11101195 - 30 Sep 2021
Cited by 2 | Viewed by 2223
Abstract
In order to evaluate loading methods and the dose dependency of bone morphogenetic protein 2 (BMP-2) in ectopic bone formation, an osteoinductive material consisting of commercially available coralline hydroxyapatite (CHA) was coated with a layer of biomimetic calcium phosphate (BioCaP) containing BMP-2 in [...] Read more.
In order to evaluate loading methods and the dose dependency of bone morphogenetic protein 2 (BMP-2) in ectopic bone formation, an osteoinductive material consisting of commercially available coralline hydroxyapatite (CHA) was coated with a layer of biomimetic calcium phosphate (BioCaP) containing BMP-2 in different ways. Eight groups—each containing samples of 0.25 g CHA—were formed and coated with, respectively, BioCaP with internally incorporated BMP-2 in concentrations of 1, 5, 10, 20, 40 and 60 µg per sample, and the two control groups with BioCaP only and BioCaP with 20 µg of adsorbed BMP-2 per sample. The samples were implanted subcutaneously in 27 male Wistar rats. The histological results show that there is no bone formation in the group in which no BMP-2 was included. All samples with BioCaP containing BMP-2 show bone formation. The group with 20 µg of adsorbed BMP-2 per sample shows the least bone formation. Coating-incorporated BMP-2 is more efficient in inducing bone formation than adsorbed BMP-2. The group with 5 µg of coating-incorporated BMP-2 per sample shows the most bone formation. Increasing the amount of coating-incorporated BMP-2 up to 60 µg does not improve ectopic bone formation. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

24 pages, 710 KiB  
Review
Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review
by Faiza Amin, Muhammad Amber Fareed, Muhammad Sohail Zafar, Zohaib Khurshid, Paulo J. Palma and Naresh Kumar
Coatings 2022, 12(8), 1094; https://doi.org/10.3390/coatings12081094 - 1 Aug 2022
Cited by 22 | Viewed by 4365
Abstract
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate [...] Read more.
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified. Full article
Show Figures

Figure 1

Back to TopTop