Habitat Assessment and Conservation Strategies

A special issue of Diversity (ISSN 1424-2818). This special issue belongs to the section "Biogeography and Macroecology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 760

Special Issue Editors

Center for Satellite Application on Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China
Interests: ecosystem monitoring and assessment; ecology and environment of remote sensing; ecosystem protection; nature reserves and national parks
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
Interests: wetland restoration; wetland ecological processes and effects; wetland ecology of hyperspectral remote sensing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The loss of species habitat is a key factor in the reduction of species and biodiversity and, under the dual impacts of climate change and human activities, the changing ecological and environmental factors vary across geographical regions and different time periods. These changes make the temporal and spatial changes to species’ habitats complex and diverse, which has highly significant impacts on biodiversity conservation. Therefore, it is very urgent to strengthen research on habitat protection and dynamic assessment, which is of great significance to developing a precise understanding of the living of environment species and how it changes, as well as to enacting out biodiversity conservation in a scientific manner. This special Issue focuses mainly on the “ecological observation, simulation, and evaluation of habitats, and paths toward habitat protection, management, and restoration”. More specifically, studies including, but not limited to, the following topics are welcome:

  • Habitat scope identification, protection network, and corridor construction;
  • Habitat ecological observation, quality assessment, and dynamic simulation;
  • Habitat risk judgment, stress dentification, and scenario prediction;
  • Habitat protection, restoration, and management;
  • Ecosystem protection and climate change responses;
  • Ecological risk monitoring and early warning;
  • Other topics of conservation and management.

Dr. Peng Hou
Prof. Dr. Wei Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diversity is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • habitat monitoring
  • habitat assessment
  • habitat protection
  • ecosystem assessment
  • ecosystem protection
  • nature reserves
  • ecosystem management
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 13903 KiB  
Article
Quantitative Analysis about the Spatial Heterogeneity of Water Conservation Services Function Using a Space–Time Cube Constructed Based on Ecosystem and Soil Types
by Yisheng Liu, Peng Hou, Ping Wang, Jian Zhu, Jun Zhai, Yan Chen, Jiahao Wang and Le Xie
Diversity 2024, 16(10), 638; https://doi.org/10.3390/d16100638 - 14 Oct 2024
Viewed by 438
Abstract
Precisely delineating the spatiotemporal heterogeneity of water conservation services function (WCF) holds paramount importance for watershed management. However, the existing assessment techniques exhibit common limitations, such as utilizing only multi-year average values for spatial changes and relying solely on the spatial average values [...] Read more.
Precisely delineating the spatiotemporal heterogeneity of water conservation services function (WCF) holds paramount importance for watershed management. However, the existing assessment techniques exhibit common limitations, such as utilizing only multi-year average values for spatial changes and relying solely on the spatial average values for temporal changes. Moreover, traditional research does not encompass all WCF values at each time step and spatial grid, hindering quantitative analysis of spatial heterogeneity in WCF. This study addresses these limitations by utilizing an improved water balance model based on ecosystem type and soil type (ESM-WBM) and employing the EFAST and Sobol’ method for parameter sensitivity analysis. Furthermore, a space–time cube of WCF, constructed using remote-sensing data, is further explored by Emerging Hot Spot Analysis for the expression of WCF spatial heterogeneity. Additionally, this study investigates the impact of two core parameters: neighborhood distance and spatial relationship conceptualization type. The results reveal that (1) the ESM-WBM model demonstrates high sensitivity toward ecosystem types and soil data, facilitating the accurate assessment of the impacts of ecosystem and soil pattern alterations on WCF; (2) the EHSA categorizes WCF into 17 patterns, which in turn allows for adjustments to ecological compensation policies in related areas based on each pattern; and (3) neighborhood distance and the type of spatial relationships conceptualization significantly impacts the results of EHSA. In conclusion, this study offers references for analyzing the spatial heterogeneity of WCF, providing a theoretical foundation for regional water resource management and ecological restoration policies with tailored strategies. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation Strategies)
Show Figures

Figure 1

Back to TopTop