energies-logo

Journal Browser

Journal Browser

Modern Technologies for Renewable Energy Development and Utilization: 4th Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A: Sustainable Energy".

Deadline for manuscript submissions: 25 April 2025 | Viewed by 2493

Special Issue Editors


E-Mail Website
Guest Editor
School of Automation, Central South University, Changsha 410083, China
Interests: renewable energy power-generation technologies; microgrid system modeling; optimization and control; economic analysis and optimization of energy/electrical systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
Interests: fault diagnosis for wind turbine; machine learning for energy prediction and analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Interests: renewable energy; fusion power supply; high power converter control; fault diagnosis; mathematical and simulation models using computer programs
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

The development and use of renewable energy have been growing in importance in recent years. Conventional energy resources, such as natural gas and oil, are insufficient to satisfy the demand of the global economy. This results in economic issues and the necessity for measures to ensure energy security.

Globally, there has been a positive trend in increasing the share of renewable energy. This development is encouraged by legislation, increased social awareness of ecology and nature conservation, and the advent of new technologies in the energy industry.

This Special Issue, entitled “Modern technologies for renewable energy development and utilization”, for the international journal Energies, mainly aims at covering original research and studies related to the following (not limited to) topics:

  • Renewable energy estimation and utilization;
  • Renewable energy systems;
  • Electric vehicles’ role in modern power systems;
  • Power electronics in renewable energy systems;
  • Integration and control of energy storage systems;
  • Microgrid management and control.

We are writing to invite you to submit your original work to this Special Issue. We are looking forward to receiving your outstanding research.

Dr. Qingan Li
Dr. Dongran Song
Dr. Mingzhu Tang
Dr. Xiaojiao Chen
Prof. Dr. Neven Duić
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wind/solar/battery
  • power electronics
  • microgrid
  • estimation and utilization
  • integration and control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5219 KiB  
Article
High-Order Grid-Connected Filter Design Based on Reinforcement Learning
by Liqing Liao, Xiangyang Liu, Jingyang Zhou, Wenrui Yan and Mi Dong
Energies 2025, 18(3), 586; https://doi.org/10.3390/en18030586 - 26 Jan 2025
Viewed by 313
Abstract
In grid-connected inverter systems, grid-connected filters can effectively eliminate harmonics. High-order filters perform better than conventional filters in eliminating harmonics and can reduce costs. For high-order filters, the use of multi-objective optimization algorithms for parameter optimization presupposes that the circuit structure must be [...] Read more.
In grid-connected inverter systems, grid-connected filters can effectively eliminate harmonics. High-order filters perform better than conventional filters in eliminating harmonics and can reduce costs. For high-order filters, the use of multi-objective optimization algorithms for parameter optimization presupposes that the circuit structure must be known. To realize the design of the filter structure and related circuit parameters that meet the requirements of the grid-connected inverter system during the design process, this paper proposes a reinforcement learning (RL) method for designing higher-order filters. Our approach combines key domain knowledge with the characteristics of structural changes to obtain some constraints, which are then processed to obtain reward and are incorporated into RL strategy learning to determine the optimal structure and corresponding circuit parameters. The proposed method realizes the simultaneous design of parameters and structures in filter design, which greatly improves the efficiency of filter design. Simulation results for the corresponding grid-connected system setup show that the grid-connected filter designed by our method demonstrates a good performance in terms of filter dimension, harmonic rejection, and total harmonic distortion. Full article
Show Figures

Figure 1

29 pages, 4950 KiB  
Article
Sustainable Design in Agriculture—Energy Optimization of Solar Greenhouses with Renewable Energy Technologies
by Danijela Nikolić, Saša Jovanović, Nebojša Jurišević, Novak Nikolić, Jasna Radulović, Minja Velemir Radović and Isidora Grujić
Energies 2025, 18(2), 416; https://doi.org/10.3390/en18020416 - 18 Jan 2025
Viewed by 834
Abstract
In modern agriculture today, the cultivation of agricultural products cannot be imagined without greenhouses. This paper presents an energy optimization of a solar greenhouse with a photovoltaic system (PV) and a ground-source heat pump (GSHP). The PV system generates electricity, while the GSHP [...] Read more.
In modern agriculture today, the cultivation of agricultural products cannot be imagined without greenhouses. This paper presents an energy optimization of a solar greenhouse with a photovoltaic system (PV) and a ground-source heat pump (GSHP). The PV system generates electricity, while the GSHP is used for heating and cooling. A greenhouse is designed with an Open Studio plug-in in the Google SketchUp environment, the EnergyPlus software (8.7.1 version) was used for energy simulation, and the GenOpt software (2.0.0 version) was used for optimization of the azimuth angle and PV cell efficiency. Results for different solar greenhouse orientations and different photovoltaic module efficiency are presented in the paper. The obtained optimal azimuth angle of the solar greenhouse was −8°. With the installation of a PV array with higher module efficiency (20–24%), it is possible to achieve annual energy savings of 6.87–101.77%. Also, with the PV module efficiency of 23.94%, a concept of zero-net-energy solar greenhouses (ZNEG) is achieved at optimal azimuth and slope angle. Through the environmental analysis of different greenhouses, CO2 emissions of PV and GSHP are calculated and compared with electricity usage. Saved CO2 emission for a zero-net-energy greenhouse is 6626 kg CO2/year. An economic analysis of installed renewable energy systems was carried out: with the total investment of 19,326 € for ZNEG, the payback period is 8.63 years. Full article
Show Figures

Figure 1

21 pages, 1654 KiB  
Article
Logistic Decisions in the Installation of Offshore Wind Farms: A Conceptual Framework
by Mario O. A. González, Gabriela Nascimento, Dylan Jones, Negar Akbari, Andressa Santiso, David Melo, Rafael Vasconcelos, Monalisa Godeiro, Luana Nogueira, Mariana Almeida and Pedro Oprime
Energies 2024, 17(23), 6004; https://doi.org/10.3390/en17236004 - 28 Nov 2024
Viewed by 714
Abstract
Offshore wind energy has achieved significant reductions in its levelized cost of energy (LCoE) in the past decade, but still needs efficiency improvements. Approximately 18% of the LCoE is related to logistical costs, underscoring the need for optimization in this area. Despite its [...] Read more.
Offshore wind energy has achieved significant reductions in its levelized cost of energy (LCoE) in the past decade, but still needs efficiency improvements. Approximately 18% of the LCoE is related to logistical costs, underscoring the need for optimization in this area. Despite its importance, logistical decisions during offshore wind farm installations remain underexplored in the literature. This article aims to identify and structure the relationships of logistic decisions to optimize total installation costs. A conceptual framework is proposed, detailing logistical decisions and their influencing factors. The results are based on a literature review and survey research for validation with specialists in logistics and offshore wind farms. The findings include the key decisions: port installation selection; vessel fleet selection; installation strategy selection; turbine pre-assembly method selection; aggregate planning approach; installation schedule coverage; storage strategy of components; and the degree of sharing information. The framework reveals the importance of coordinating the value chain in the installation process, mainly due to the influence of weather factors; the logistic decisions, when considered in a systemic view, can contribute to a global efficiency gain in the installation process. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 2485 KiB  
Review
Review of Design Schemes and AI Optimization Algorithms for High-Efficiency Offshore Wind Farm Collection Systems
by Yuchen Wang, Dongran Song, Li Wang, Chaoneng Huang, Qian Huang, Jian Yang and Solomin Evgeny
Energies 2025, 18(3), 594; https://doi.org/10.3390/en18030594 - 27 Jan 2025
Viewed by 389
Abstract
The offshore wind power sector has witnessed exponential growth over the past decade, with large-scale offshore wind farms grappling with the challenge of elevated construction and maintenance expenses. Given that the collector system constitutes a substantial part of the investment cost in wind [...] Read more.
The offshore wind power sector has witnessed exponential growth over the past decade, with large-scale offshore wind farms grappling with the challenge of elevated construction and maintenance expenses. Given that the collector system constitutes a substantial part of the investment cost in wind farms, the design and optimization of this system are pivotal to enhancing the economic viability of offshore wind farms. A thorough examination of collector system design and optimization methodologies is essential to elucidate the critical aspects of collector system design and to assess the comparative merits and drawbacks of various optimization techniques, thereby facilitating the development of collector systems that offer superior economic performance and heightened reliability. This paper conducts a review of the evolving trends in collector system research, with a particular emphasis on topology optimization models and algorithms. It juxtaposes the economic and reliability aspects of collector systems with varying topologies and voltage levels. Building on this foundation, the paper delves into the optimization objectives and variables within optimization models. Furthermore, it provides a comprehensive overview and synthesis of AI-driven optimization algorithms employed to address the optimization challenges inherent in offshore wind farm collector systems. The paper concludes by summarizing the existing research limitations pertaining to offshore wind farm collector systems and proposes innovative directions for future investigative endeavors. The overarching goal of this paper is to enhance the comprehension of offshore wind farm collector system design and optimization through a systematic analysis, thereby fostering the continued advancement of offshore wind power technology. Full article
Show Figures

Figure 1

Back to TopTop