energies-logo

Journal Browser

Journal Browser

Advances in the Development of Geoenergy: 2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "H: Geo-Energy".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 5514

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Engineering, China University of Geosciences, Wuhan, China
Interests: unconventional oil and gas resources; single-phase/multi-phase fluid flow; mechanical properties of natural gas hydrate; reservoirs
Special Issues, Collections and Topics in MDPI journals
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Interests: discrete fracture networks; engineering geology; solid–fluid coupling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Interests: composite materials; polymer encapsulation; polymer-reinforced concrete; thermal regulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Science, China Agricultural University, Beijing 100083, China
Interests: multiphase multifield particle composites; solar energy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The use of unconventional oil and gas resources has increased in natural gas and oil production worldwide in recent decades. The science and technology involved in the development of unconventional oil and gas resources not only play indispensable roles in petroleum engineering but are also crucial for various areas such as geological carbon dioxide capture, utilization and storage (CCUS), hydrology, geothermal energy production, and so on.

Potential topics include, but are not limited to, the following:

  • New methods to test and characterize properties of unconventional oil and gas reservoirs;
  • Hydraulic fracturing of unconventional oil and gas reservoirs;
  • Effective techniques to enhance recovery of unconventional oil and gas reservoirs;
  • Artificial intelligence in unconventional oil and gas development;
  • New science and technology involve in unconventional oil and gas development;
  • Developmental technologies for new energy resources (e.g., hydrogen energy and gas hydrate);
  • Carbon-reducing technologies (e.g., CCUS) in unconventional oil and gas development.

Prof. Dr. Gang Lei
Dr. Weiwei Zhu
Dr. Zhenhua Wei
Dr. Liangliang Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • unconventional reservoirs
  • EOR
  • fracturing
  • CCUS
  • geoenergy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 1098 KiB  
Article
Key Elements in Integrity Management of Underground Gas Storage: A Framework for Energy Safety
by Shuyi Xie, Bin He, Ligang Chen, Kangkai Xu, Jinheng Luo, Lifeng Li and Bohong Wang
Energies 2025, 18(2), 378; https://doi.org/10.3390/en18020378 - 17 Jan 2025
Viewed by 496
Abstract
Gas reservoir-type underground gas storage (UGS) plays a critical role in China’s natural gas reserves and peak shaving, serving as an essential component of the energy security system. Its unique cyclic injection and production operations not only stabilize the natural gas supply but [...] Read more.
Gas reservoir-type underground gas storage (UGS) plays a critical role in China’s natural gas reserves and peak shaving, serving as an essential component of the energy security system. Its unique cyclic injection and production operations not only stabilize the natural gas supply but also impose stringent requirements on the safety and integrity of geological structures, wellbores, and surface facilities. Weaknesses in current practices can cause accidents, directly threatening energy security. Therefore, continuously improving integrity management is the key to mitigating energy risks. Currently, the integrity management of gas storage faces challenges such as an abundance of standards and the complexity of management elements, which affect both operational safety and management efficiency. To address these issues, this study systematically analyzes domestic and international standards related to gas storage and establishes a technical system based on “three-in-one” integrity management (geological structure, wellbore, and surface facilities). Key elements of integrity management are identified and optimized, and recommended execution standards for critical factors are proposed to provide a theoretical basis and decision-making support for the safe operation of gas storage. This study not only offers a reference for optimizing and implementing integrity management standards but also has significant practical implications for enhancing energy security and reducing energy risks, ensuring the smooth execution of China’s natural gas reserve and peak shaving initiatives. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

14 pages, 9067 KiB  
Article
Study on Improving Recovery of Highly Heterogeneous Reservoirs by Unsteady Water Injection Technology
by Lun Zhao, Wenqi Zhao, Meng Sun, Jincai Wang, Hongfei Ma, Yi Li and Xiaoliang Zhao
Energies 2025, 18(1), 159; https://doi.org/10.3390/en18010159 - 3 Jan 2025
Viewed by 423
Abstract
Unstable water injection can effectively improve the recovery ratio of reservoirs with strong heterogeneity. However, the oil displacement mechanism and the determination method of unstable water injection parameters still need to be clarified, especially for complex fracture reservoirs, which greatly restrict the popularization [...] Read more.
Unstable water injection can effectively improve the recovery ratio of reservoirs with strong heterogeneity. However, the oil displacement mechanism and the determination method of unstable water injection parameters still need to be clarified, especially for complex fracture reservoirs, which greatly restrict the popularization and development of unstable water injection technology. This paper studies unstable water injection technology in highly heterogeneous reservoirs from the core and reservoir scales, utilizing many displacement experiments and numerical simulations. The differences in oil displacement efficiency, remaining oil distribution, pressure field, and streamlines between continuous water injection and unstable water injection are compared and evaluated. Five flow stages of unstable injection and production are precisely divided, and the microscopic and macroscopic displacement mechanism is clarified. A numerical model of two injection wells and one production is established to determine the best time to implement unstable water injection technology. Based on the principle of pressure superposition, the expression of pressure field distribution between injection and production well in each period of unstable water injection is analytically solved. This formula has provided a new development parameter optimization method aiming at the maximum pressure fluctuation range and optimized the development technology parameters in the water injection process. The results show that precise control injection and production parameters can expand water swept volume, effectively improve the degree of reserve utilization, and improve the recovery of complex reservoirs by 3–7%, which provides a reliable basis for the practical implementation of unstable water injection technology. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

26 pages, 5031 KiB  
Article
Effect of the Heterogeneity of Coal on Its Seepage Anisotropy: A Micro Conceptual Model
by Xiuling Chen, Guanglei Cui, Jiaming Luo, Chunguang Wang and Jian Zhang
Energies 2024, 17(24), 6484; https://doi.org/10.3390/en17246484 - 23 Dec 2024
Viewed by 455
Abstract
Coal is a typical dual-porosity structural material. The injection of CO2 into coal seams has been shown to be an effective method for storing greenhouse gasses and extracting coal bed methane. In light of the theory of dual-porosity media, we investigate the [...] Read more.
Coal is a typical dual-porosity structural material. The injection of CO2 into coal seams has been shown to be an effective method for storing greenhouse gasses and extracting coal bed methane. In light of the theory of dual-porosity media, we investigate the impact of non-homogeneity on seepage anisotropy and examine the influence of CO2 gas injection on the anisotropy of coal and the permeability of fractures. The results demonstrate that under constant pressure conditions, coal rock has the greatest permeability variation in the direction of face cleats and the smallest changes in the direction of vertical bedding. The more pronounced the heterogeneity, the more evident the change in permeability and the less pronounced the decreasing stage of permeability. Additionally, the larger the diffusion coefficient is, the less pronounced the permeability change. The change in permeability is inversely proportional to the size of the adsorption constant and directly proportional to the size of the fracture. As the matrix block size increases, the permeability also increases, whereas the decrease in permeability becomes less pronounced. The findings of this study offer a theoretical basis for further research into methods for enhancing the CO2 sequestration rate. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

20 pages, 7936 KiB  
Article
Study on the Influence of Deep Coalbed Methane Horizontal Well Deployment Orientation on Production
by Ruyong Feng, Chen Li, Lichun Sun, Jian Wang, Jia Liu and Na Li
Energies 2024, 17(22), 5784; https://doi.org/10.3390/en17225784 - 20 Nov 2024
Viewed by 494
Abstract
The development of deep coalbed methane has become an important way to obtain natural gas in China. The development of deep CBM mainly depends on horizontal well technology. The different orientations of horizontal wells will have an important impact on the productivity of [...] Read more.
The development of deep coalbed methane has become an important way to obtain natural gas in China. The development of deep CBM mainly depends on horizontal well technology. The different orientations of horizontal wells will have an important impact on the productivity of coalbed methane wells. The angle grid geological model of coalbed methane reservoirs with different inclination angles is established, and the deployment orientation of horizontal wells is changed to study the optimal deployment orientation of deep-saturated coalbed methane reservoirs. When CBM horizontal wells in deep saturated CBM reservoirs are deployed upward along the dip, well-controlled reserves, peak daily gas production, and cumulative gas production increase as the dip decreases. When deploying down the dip, with the increase in dip angle, the well-controlled reserves increase, and the peak daily gas production and cumulative gas production first increase and then decrease. In the low-dip reservoir, the development effect of horizontal wells deployed in different directions is better than that in the up-dip direction. In the high-dip reservoir, the development effect of horizontal wells deployed along the strike is better than that in the up-dip and down-dip directions. The development effect of horizontal wells is controlled by both well-controlled reserves and reservoir pressure drop. Because this method is targeted at different geological conditions, it can be used to guide the horizontal well optimization of other coalbed methane blocks and has very important significance for the development and optimization of coalbed methane reservoirs. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

18 pages, 3406 KiB  
Article
Design and Visual Implementation of a Regional Energy Risk Superposition Model for Oil Tank Farms
by Yufeng Yang, Xixiang Zhang, Shuyi Xie, Shanqi Qu, Haotian Chen, Qiming Xu and Guohua Chen
Energies 2024, 17(22), 5775; https://doi.org/10.3390/en17225775 - 19 Nov 2024
Viewed by 656
Abstract
Ensuring the safety of oil tank farms is essential to maintaining energy security and minimizing the impact of potential accidents. This paper develops a quantitative regional risk model designed to assess both individual and societal risks in oil tank farms, with particular attention [...] Read more.
Ensuring the safety of oil tank farms is essential to maintaining energy security and minimizing the impact of potential accidents. This paper develops a quantitative regional risk model designed to assess both individual and societal risks in oil tank farms, with particular attention to energy-related risks such as leaks, fires, and explosions. The model integrates factors like day–night operational variations, weather conditions, and risk superposition to provide a comprehensive and accurate evaluation of regional risks. By considering the cumulative effects of multiple hazards, including those tied to energy dynamics, and the stability and validity of the model are researched through Monte Carlo simulations and case application. The results show that the model enhances the reliability of traditional risk assessment methods, making it more applicable to oil tank farm safety concerns. Furthermore, this study introduces a practical tool that simplifies the risk assessment process, allowing operators and decision-makers to evaluate risks without requiring in-depth technical expertise. The methodology improves the ability to safeguard oil tank farms, ensuring the stability of energy supply chains and contributing to broader energy security efforts. This study provides a valuable method for researchers and engineers seeking to enhance regional risk calculation efficiency, with a specific focus on energy risks. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

18 pages, 1018 KiB  
Article
Emergency Capability Evaluation of Port-Adjacent Oil Storage and Transportation Bases: An Improved Analytic Hierarchy Process Approach
by Baojing Xie, Yongguo Shi, Jinfeng Zhang, Mengdi Ye, Xiaolan Huang, Xinxiang Yang, Lidong Pan, Xin Xu and Dingding Yang
Energies 2024, 17(21), 5303; https://doi.org/10.3390/en17215303 - 25 Oct 2024
Viewed by 725
Abstract
The large-scale storage and stable supply of oil products are essential for national energy security and economic development. As the economy expands and energy demands rise, centralized storage and supply systems become increasingly vital for ensuring the efficiency and reliability of oil product [...] Read more.
The large-scale storage and stable supply of oil products are essential for national energy security and economic development. As the economy expands and energy demands rise, centralized storage and supply systems become increasingly vital for ensuring the efficiency and reliability of oil product distribution. However, large oil storage depots present substantial safety risks. In the event of fires, explosions, or other accidents, emergency response efforts face stringent demands and challenges. To enhance the emergency response capabilities of oil storage and transportation bases (OSTBs), this paper proposes an innovative approach that integrates the improved analytic hierarchy process (IAHP) with the Entropy Weight Method (EMW) to determine the combined weights of various indices. This approach reduces the subjective bias associated with the traditional analytic hierarchy process (AHP). The emergency response capabilities of OSTBs are subsequently evaluated through fuzzy comprehensive analysis. An empirical study conducted on an OSTB in the Zhoushan archipelago quantitatively assesses its emergency preparedness. The results show that the base excels in pre-incident prevention, demonstrates robust preparedness and response capabilities, and exhibits moderate recovery abilities after incidents. These findings provide a theoretical foundation for reducing the likelihood of accidents, enhancing emergency response efficiency, and mitigating the severity of consequences. Practical recommendations are also offered based on the results. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

16 pages, 4341 KiB  
Article
Study on the Gas Phase Liquid Carrying Velocity of Deep Coalbed Gas Well with Atomization Assisted Production
by Ruidong Wu, Haidong Wang, Gangxiang Song, Dongping Duan, Chunguang Zhang, Wenjuan Zhu and Yikun Liu
Energies 2024, 17(16), 4185; https://doi.org/10.3390/en17164185 - 22 Aug 2024
Viewed by 741
Abstract
In order to clarify the gas-phase carrying capacity after the atomization of water from the bottom of deep coalbed wells, considering characteristics of atomization-assisted production and the dynamic equilibrium principle of gas–liquid two-phase flow in the wellbore, the gas-phase liquid-carrying drop model was [...] Read more.
In order to clarify the gas-phase carrying capacity after the atomization of water from the bottom of deep coalbed wells, considering characteristics of atomization-assisted production and the dynamic equilibrium principle of gas–liquid two-phase flow in the wellbore, the gas-phase liquid-carrying drop model was established, and the solution method of the upstream and downstream driving force of liquid drop flow was studied. We also verified the theoretical model through physical simulation. Then, the law for the influence of droplet size, wellbore inclination, wellbore diameter, and wellhead back pressure of the critical liquid-carrying velocity in the gas phase is analyzed using the model. The results show the following: ① the larger the diameter of atomized droplets, the greater the gravity force applied to it, the worse the ability to be carried by the gas phase, a onefold increase in droplet diameter corresponds to the increase in the minimum critical velocity of the gas phase by 1.45 times; ② with the increase in wellbore inclination, the liquid-carrying capacity of the gas phase decreases, and the minimum critical liquid-carrying velocity of equal diameter droplets increases by 0.01438 m/s or 1.27 times for the increase in wellbore inclination by 10°; ③ with the increase in wellbore diameter, both the driving force of a droplet of equal diameter and the flow resistance through the gas phase in the wellbore decrease within the range of a driving pressure difference of 0.2 Mpa; the decrease in liquid-carrying velocity caused by the decrease in received flow resistance can reach the maximum value of 0.0473 m/s; ④ with the increase in wellhead back pressure, the driving force of equal-diameter droplets decreases, the resistance against passing through the high-concentration gas phase increases, and the gas-phase-carrying droplets start the game; ⑤ the atomization-assisted production has the function of drainage gas recovery, and the adoption of atomization-assisted production technology can increase the production time of a coalbed gas flowing well, enabling the wells to have a good transition time interval for the conversion of flowing wells to pumping ones, which provides a precise production dynamic basis for the efficient design and implements the overall strategy of drainage gas recovery by deep-well pumping. In short, this technology has the high-efficiency liquid-carrying function of “water atomization to help liquid-phase flow and increase gas production”, as well as obvious technical advantages, which can provide a new idea for the development of deep coalbed methane wells and other types of gas wells with water. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 3464 KiB  
Review
Advancements and Future Prospects in the Hydraulic Fracturing of Geothermal Reservoirs
by Kun Shan, Qinqin Zou, Chongshuai Li and Ziwang Yu
Energies 2024, 17(23), 6082; https://doi.org/10.3390/en17236082 - 3 Dec 2024
Viewed by 802
Abstract
Reservoir reconstruction is a critical challenge in many significant underground energy projects, such as enhanced geothermal systems, oil shale extraction, and shale gas development. Effectively reconstructing geothermal reservoirs can significantly enhance the exploitation and production capacity of geothermal resources. However, this process requires [...] Read more.
Reservoir reconstruction is a critical challenge in many significant underground energy projects, such as enhanced geothermal systems, oil shale extraction, and shale gas development. Effectively reconstructing geothermal reservoirs can significantly enhance the exploitation and production capacity of geothermal resources. However, this process requires stringent technical standards and varies with different geological conditions across regions, necessitating tailored reconstruction strategies. This review offers a comprehensive examination of hydraulic fracturing within geothermal reservoirs, covering the geological and physical characteristics inherent to these systems, the effects of injection methods and thermal stimulation on hydraulic fracturing processes, and the assessment and optimization of transformation effects, as well as environmental implications and risk management considerations. We explore the influence of various injection modes on hydraulic fracturing dynamics. Moreover, we compare the differences between hydraulic fracture propagation with and without thermal effects. Additionally, we summarize optimization strategies for reservoir reconstruction. Finally, we discuss several challenges and potential future directions for development, offering insights into possible advancements. This review is of substantial significance for both research and commercial applications related to hydraulic fracturing in geothermal reservoirs. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

Back to TopTop