energies-logo

Journal Browser

Journal Browser

Control of Renewable Energy Sources in Power Systems and Smart Grids: 2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A1: Smart Grids and Microgrids".

Deadline for manuscript submissions: 25 February 2025 | Viewed by 5715

Special Issue Editor


E-Mail Website
Guest Editor
The Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Interests: model and control of power electronics; renewable energy integration; digitalization grid; power electronics dominated grid
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To get the low-carbon energy infrastructure, tremendous renewable energy sources are integrated into the modern power grid while reducing conventional fossil power plants. In this transition, the power electronics-based renewable energy system acts as one of the most important role players, which can convert renewable energies to electrical energy. Due to the recent development of power electronics technology and its control, renewable energy supports more efficient, economical, and reliable power than ever before.

Recently, various loads (e.g., electrical vehicle, data center, and motor) have been connected to the grid based on power electronics. With the high-penetration level of power electronics-based renewable energy in the power grid, more and more issues are to be challenged, such as performance deterioration, efficiency decrease, and power quality reduction, as well as instability phenomena. Herein, this Special Issue focuses on recent advances and challenges in power electronics-based renewable energy sources integrated into the power grid.

Dr. Yonghao Gui
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • model and control of power electronics
  • advanced power electronic technologies for renewable energy
  • analysis of power electronics in power systems
  • power electronics dominated power grid
  • renewable energy integration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 18784 KiB  
Article
Robust Secondary Controller for Islanded Microgrids with Unexpected Electrical Partitions under Fault Conditions
by Evangelos E. Pompodakis, Georgios I. Orfanoudakis, Katsigiannis Yiannis and Emmanuel S. Karapidakis
Energies 2024, 17(15), 3727; https://doi.org/10.3390/en17153727 - 29 Jul 2024
Viewed by 798
Abstract
This paper proposes a sophisticated, fault-tolerant, and centralized secondary controller that is designed for inverter-based, islanded microgrids. The proposed controller enhances system resilience to unexpected network partitions, which typically occur due to the tripping of protective devices under fault conditions. In typical radially [...] Read more.
This paper proposes a sophisticated, fault-tolerant, and centralized secondary controller that is designed for inverter-based, islanded microgrids. The proposed controller enhances system resilience to unexpected network partitions, which typically occur due to the tripping of protective devices under fault conditions. In typical radially configured MGs, a line fault can cause protective devices to isolate the faulted line, thereby splitting the MG into two electrically independent sub-microgrids (SMGs), while retaining the existing communication and control framework. In contrast to traditional centralized and distributed secondary controllers, which often fail to restore the frequency to the nominal value (50 Hz) in split SMGs, the proposed controller exhibits exceptional performance. Through simulation studies on 6-bus and 13-bus islanded MG setups, the controller has not only demonstrated its ability to swiftly restore the nominal frequency in both SMGs within a few seconds (specifically 5 s), but also to ensure fair power distribution among the distributed generators (DGs) supplying the SMGs. This rapid frequency stabilization underscores the controller’s effectiveness in maintaining stable frequency levels immediately following a fault. In contrast, the use of traditional centralized and consensus controllers typically results in a frequency deviation of about 3 Hz from the nominal value in one of the SMGs during the microgrid’s partition. Full article
Show Figures

Figure 1

22 pages, 5706 KiB  
Article
Two-Stage Optimal Scheduling for Urban Snow-Shaped Distribution Network Based on Coordination of Source-Network-Load-Storage
by Zhe Wang, Jiali Duan, Fengzhang Luo and Xuan Wu
Energies 2024, 17(14), 3583; https://doi.org/10.3390/en17143583 - 21 Jul 2024
Viewed by 793
Abstract
With the widespread integration of distributed resources, optimizing the operation of urban distribution networks faces challenges including uneven source-load-storage distribution, fluctuating feeder power flows, load imbalances, and network congestion. The urban snow-shaped distribution network (SDN), characterized by numerous intra-station and inter-station tie switches, [...] Read more.
With the widespread integration of distributed resources, optimizing the operation of urban distribution networks faces challenges including uneven source-load-storage distribution, fluctuating feeder power flows, load imbalances, and network congestion. The urban snow-shaped distribution network (SDN), characterized by numerous intra-station and inter-station tie switches, serves as a robust framework to intelligently address these issues. This study focuses on enhancing the safe and efficient operation of SDNs through a two-phase optimal scheduling model that coordinates source-network-load-storage. In the day-ahead scheduling phase, an optimization model is formulated to minimize operational costs and mitigate load imbalances. This model integrates network reconfiguration, energy storage systems (ESSs), and flexible load (FL). During intra-day scheduling, a rolling optimization model based on model predictive control adjusts operations using the day-ahead plan to minimize the costs and penalties associated with power adjustments. It provides precise control over ESS and FL outputs, promptly correcting deviations caused by prediction errors. Finally, the proposed model is verified by an actual example of a snow-shaped distribution network in Tianjin. The results indicate significant improvements in leveraging coordinated interactions among source-network-load-storage, effectively reducing spatial-temporal load imbalances within feeder clusters and minimizing the impact of prediction inaccuracies. Full article
Show Figures

Figure 1

16 pages, 6042 KiB  
Article
An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System
by Wei Feng, Liu Yang, Kai Sun, Yuebin Zhou and Zhiyong Yuan
Energies 2024, 17(14), 3460; https://doi.org/10.3390/en17143460 - 14 Jul 2024
Cited by 2 | Viewed by 958
Abstract
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines, for example, high-voltage direct current, the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue, firstly, an [...] Read more.
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines, for example, high-voltage direct current, the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue, firstly, an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold, while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then, a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly, the sensitivity of the total return on investment to wind speed parameters was investigated, and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419%, and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted. Full article
Show Figures

Figure 1

15 pages, 5485 KiB  
Article
Model-Based Thermal Stress and Lifetime Estimation of DFIG Wind Power Converter
by Xinming Yu, Francesco Iannuzzo and Dao Zhou
Energies 2024, 17(14), 3451; https://doi.org/10.3390/en17143451 - 13 Jul 2024
Viewed by 830
Abstract
Turbine systems equipped with doubly fed induction generation (DFIG) are becoming increasingly vital in wind power generation, with the reliability of the devices serving as a pillar in the industrial sector. Thermal stress and lifetime assessment are fundamental indicators in this regard. This [...] Read more.
Turbine systems equipped with doubly fed induction generation (DFIG) are becoming increasingly vital in wind power generation, with the reliability of the devices serving as a pillar in the industrial sector. Thermal stress and lifetime assessment are fundamental indicators in this regard. This paper primarily addresses the thermal stress and lifespan of power semiconductor devices utilized in a DFIG grid-side converter (GSC) and rotor-side converter (RSC). PLECS (Piecewise Linear Electrical Circuit Simulation) is employed to validate the electrical and thermal stress of the power devices. Additionally, Ansys Icepak, a finite element analysis (FEA) software, is utilized to confirm temperature fluctuations under various operations. The power consumption and junction temperature of the power devices in the GSC and RSC of a 2 MW DFIG are compared. It is evident that the most stressed power semiconductor is the IGBT for the GSC with a temperature swing of 3.4 °C, while the diode in the RSC is the most stressed with a temperature swing of 10.1 °C. This paper also presents a lifetime model to estimate the lifespan of the power device based on the annual wind profile. By considering the annual mission profile, we observe that the lifetime of the back-to-back power converter is limited by the diode of the RSC, whose B10 lifetime is calculated at 15 years. Full article
Show Figures

Figure 1

17 pages, 1568 KiB  
Article
Monitoring Energy Flows for Efficient Electricity Control in Low-Voltage Smart Grids
by Ivan Alymov and Moshe Averbukh
Energies 2024, 17(9), 2123; https://doi.org/10.3390/en17092123 - 29 Apr 2024
Viewed by 1080
Abstract
Modern low-voltage distribution lines, especially those linked with renewable energy sources, face technical hurdles like unaccounted and illegal electricity use, increased power losses, voltage control issues, and overheating. Tackling these challenges effectively requires continuously monitoring power flows and identifying problematic network spots. This [...] Read more.
Modern low-voltage distribution lines, especially those linked with renewable energy sources, face technical hurdles like unaccounted and illegal electricity use, increased power losses, voltage control issues, and overheating. Tackling these challenges effectively requires continuously monitoring power flows and identifying problematic network spots. This study introduces a method involving ongoing energy flow monitoring from distribution transformers and other sources to end-users through auxiliary facilities. The algorithm seamlessly integrates with consumers’ existing smart power meters and supporting infrastructure, eliminating the need for extra equipment or data. Deployed in several distribution networks totaling about 40 GWh/year over two years, this diagnostic system showed promising results. It notably cut total power consumption by around 6% by detecting and mitigating illegal energy waste and addressing technical issues. Additionally, it reduced technical personnel involvement in operational tasks by approximately twentyfold, significantly enhancing network profitability overall. Full article
Show Figures

Figure 1

20 pages, 992 KiB  
Article
Local DER Control with Reduced Loop Interactions in Active Distribution Networks
by Giuseppe Fusco and Mario Russo
Energies 2024, 17(9), 1991; https://doi.org/10.3390/en17091991 - 23 Apr 2024
Cited by 1 | Viewed by 641
Abstract
Active Distribution Networks are Multi-Input Multi-Output (MIMO) systems with coupled dynamics, which cause interactions among the control loops of Distributed Energy Resources (DERs). This undesired effect leads to performance degradation of voltage control. To mitigate the effects of this unavoidable coupling, the present [...] Read more.
Active Distribution Networks are Multi-Input Multi-Output (MIMO) systems with coupled dynamics, which cause interactions among the control loops of Distributed Energy Resources (DERs). This undesired effect leads to performance degradation of voltage control. To mitigate the effects of this unavoidable coupling, the present paper proposes a systematic design procedure based on the analysis of the interaction’s sources. In detail, each DER is equipped with a double-loop PI to control the active and reactive power output of the voltage source converter, which connects the DER to the network’s node. Furthermore, to guarantee ancillary services, the two loops are coupled by a simple mechanism of cooperation of the active power to voltage regulation realized by a filtered droop law. To achieve voltage regulation with reduced loop interactions, the PI parameters and the filter’s pulse are designed according to a procedure with two sequential steps based on the Internal Model Control (IMC) technique. Simulation studies are finally presented to demonstrate that the proposed design method achieves both reduction of the loop interaction and robust voltage control in the presence of model parameter uncertainty in the MIMO plant, modeling various operating conditions of the ADN, including a step connection of large loads, renewable energy source variations, and changes in the substation transformer ratio. Full article
Show Figures

Figure 1

Back to TopTop