Application of Novel Thermal and Non-Thermal Technologies to the Dairy Industry

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Engineering and Technology".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 2540

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Technology (DTA), Federal University of Viçosa (UFV), University Campus, Viçosa 36570-900, Brazil
Interests: food processing; emerging technologies; thermal processing; enzymes; proteins; plant-based; milk; fermentation; probiotics; sustainable food development
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Núcleo de Estudos e Pesquisas em Alimentação (NEPA), Universidade Estadual de Campinas (UNICAMP), Albert Einstein, 291, Campinas 13083-852, Brazil
Interests: food processing and technology; milk quality; sheep milk; fermented dairy products; enzymes; thermal processes; emerging technologies; non-conventional technologies

Special Issue Information

Dear Colleagues,

We are excited to announce this Special Issue entitled “Application of Novel Thermal and Non-Thermal Technologies to the Dairy Industry”. This Special Issue aims to explore the latest advances and innovations in thermal and non-thermal technologies developed in the dairy industry. We invite researchers and experts in the field to contribute original research articles, reviews, and short communications that address the application, benefits, and challenges of these emerging technologies in the dairy industry. Topics of interest include but are not limited to the following: high-pressure processing, pulsed electric fields, ultrasound, microwave heating, ohmic heating, and novel thermal treatments. This Special Issue will provide valuable insights and contribute to the ongoing dialogue on improving dairy product quality, safety, yield, and sustainability.

Prof. Dr. Bruno Ricardo de Castro Leite Júnior
Dr. Alline Artigiani Lima Tribst
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • milk processing
  • dairy products
  • fermented dairy products
  • cream-based dairy products
  • thermal processing
  • ohmic heating
  • microwave heating
  • high-pressure processing
  • ultrasound
  • pulsed electric fields
  • cold plasma
  • hurdle technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 898 KiB  
Article
Changes in Microbial Safety and Quality of High-Pressure Processed Camel Milk
by Tareq M. Osaili, Dinesh Kumar Dhanasekaran, Fayeza Hasan, Reyad S. Obaid, Anas A. Al-Nabulsi, Amin N. Olaimat, Leila Cheikh Ismail, Nadia Alkalbani, Mutamed Ayyash, Gafar Babatunde Bamigbade, Richard Holley, Adan Shahzadi Cheema, Wael Ahmad Bani Odeh, Khalid Abdulla Mohd and Ayesha Khalid Haji Kamal
Foods 2025, 14(2), 320; https://doi.org/10.3390/foods14020320 - 19 Jan 2025
Viewed by 599
Abstract
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP [...] Read more.
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP on total plate count (TPC), yeasts and molds (YM), and lactic acid bacteria (LAB) in camel milk; (iii) investigate the behavior of several spoilage-causing bacteria during storage at 4 °C and 10 °C for up to 10 d post-HPP treatment; and (iv) assess the effect of HPP on the protein degradation of camel milk. The D-values for L. monocytogenes, E. coli O157:H7, and Salmonella spp. were 3.77 ± 0.36 min, 1.48 ± 0.08 min, and 2.10 ± 0.13 min, respectively. The HPP treatment decreased pathogenic microorganisms by up to 2 to 3 log cfu/mL (depending on treatment conditions). However, HPP reduced TPC, YM, and LAB by <1 log cfu/mL, regardless of the length of pressure exposure. HPP treatment, even at extended holding times, did not significantly alter either the proteolytic activity or casein micelle structure in camel milk. This study highlights HPP as a promising non-thermal technique for enhancing the microbiological safety of camel milk. Full article
Show Figures

Figure 1

12 pages, 1704 KiB  
Article
Strategies to Improve the Quality of Goat Yogurt: Whey Protein Supplementation and Milk Pre-Treatment with High Shear Dispersion Assisted by Ultrasound
by Lorena Soares Xavier, Flaviana Coelho Pacheco, Gabriela Aparecida Nalon, Jeferson Silva Cunha, Fabio Ribeiro dos Santos, Ana Flávia Coelho Pacheco, Alline Artigiani Lima Tribst and Bruno Ricardo de Castro Leite Júnior
Foods 2024, 13(10), 1558; https://doi.org/10.3390/foods13101558 - 16 May 2024
Cited by 1 | Viewed by 1490
Abstract
This work investigated the fermentation kinetics and characteristics of goat yogurt supplemented with bovine whey protein isolate (WPI) (0%, 2.5% and 5.0%) subjected to high shear dispersion (HSD) assisted by ultrasound (US). Protein supplementation and the physical processes increased the electronegativity of the [...] Read more.
This work investigated the fermentation kinetics and characteristics of goat yogurt supplemented with bovine whey protein isolate (WPI) (0%, 2.5% and 5.0%) subjected to high shear dispersion (HSD) assisted by ultrasound (US). Protein supplementation and the physical processes increased the electronegativity of the zeta potential (≤60%), whereas particle size reduction was observed only with physical processes (≤42%). The addition of 2.5% WPI reduced yogurt fermentation time by 30 min. After 24 h of storage at 7 °C, lactic acid bacteria counts did not differ between samples (≥8 log CFU/mL), and the supplementation was sufficient to increase the apparent viscosity (≤5.65 times) and water-holding capacity (WHC) of the yogurt (≤35% increase). However, supplementation combined with physical processes promoted greater improvements in these parameters (6.41 times in apparent viscosity and 48% in WHC) (p < 0.05), as confirmed by the denser and better-organized protein clusters observed in microscopic evaluation. Thus, both approaches proved to be promising alternatives to improve goat yogurt quality. Therefore, the decision to adopt these strategies, either independently or in combination, should consider cost implications, the product quality, and market demand. Full article
Show Figures

Graphical abstract

Back to TopTop