ijms-logo

Journal Browser

Journal Browser

Recent Progress in Molecular Mechanisms of Sperm Metabolism and Development

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Endocrinology and Metabolism".

Deadline for manuscript submissions: 20 April 2025 | Viewed by 3235

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Animal Science, Iowa State University, Ames, IA, USA
2. Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO, USA
Interests: male infertility; sperm capacitation; sperm diagnostics; high-throughput single cell phenomics

Special Issue Information

Dear Colleagues,

Sperm development is a multifaceted biological process characterized by a series of interconnected stages, beginning with germ cell proliferation and differentiation in the testes, continuing through the maturation in the male reproductive tract, and culminating in the achievement of fertilization potential. This intricate journey is marked by significant biochemical and morphological transformations, essential for the acquisition of fertility. Advanced research delving into the intricacies of sperm cell metabolism, seminal fluid biochemical composition, and the multifarious steps of sperm capacitation including steps thereafter to penetrate and activate the oocyte have been instrumental in deepening our understanding of male reproductive biology. These insights are pivotal in elucidating the complex molecular interplay underpinning male fertility.

This special issue is titled “Recent Progress in Molecular Mechanisms of Sperm Metabolism and Development” and aims to collect original articles and reviews, focusing on key molecular mechanisms in sperm development and covering the latest discoveries in sperm cell metabolism. This special issue is dedicated to the exploration of spermatogenesis, epididymal maturation, sperm capacitation, and the steps that ultimately support oocyte activation, with a special focus on the molecular mechanisms behind them. This special issue aims to provide theoretical support for in vitro and in vivo studies of animal reproduction.

Dr. Karl Kerns
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sperm development 
  • germ cell proliferation 
  • sperm cell metabolism 
  • seminal fluid biochemical composition 
  • spermatogenesis 
  • epididymal maturation 
  • sperm capacitation 
  • oocyte activation
 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5868 KiB  
Article
Revisiting the Injury Mechanism of Goat Sperm Caused by the Cryopreservation Process from a Perspective of Sperm Metabolite Profiles
by Chunyan Li, Chunrong Lv, Allai Larbi, Jiachong Liang, Qige Yang, Guoquan Wu and Guobo Quan
Int. J. Mol. Sci. 2024, 25(16), 9112; https://doi.org/10.3390/ijms25169112 - 22 Aug 2024
Cited by 1 | Viewed by 1119
Abstract
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat [...] Read more.
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat sperm by analyzing changes of the metabolic characteristics in sperm during the cryopreservation process. The ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) technique was performed to explore metabolite profiles of fresh sperm (C group), equilibrated sperm (E group), and frozen–thawed sperm (F group). In total, 2570 metabolites in positive mode and 2306 metabolites in negative mode were identified, respectively. After comparative analyses among these three groups, 374 differentially abundant metabolites (DAMs) in C vs. E, 291 DAMs in C vs. F, and 189 DAMs in E vs. F were obtained in the positive mode; concurrently, 530 DAMs in C vs. E, 405 DAMs in C vs. F, and 193 DAMs in E vs. F were obtained in the negative mode, respectively. The DAMs were significantly enriched in various metabolic pathways, including 31 pathways in C vs. E, 25 pathways in C vs. F, and 28 pathways in E vs. F, respectively. Among them, 65 DAMs and 25 significantly enriched pathways across the three comparisons were discovered, which may be tightly associated with sperm characteristics and function. Particularly, the functional terms such as TCA cycle, biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycine, serine and threonine metabolism, alpha-linolenic acid metabolism, and pyruvate metabolism, as well as associated pivotal metabolites like ceramide, betaine, choline, fumaric acid, L-malic acid and L-lactic acid, were focused on. In conclusion, our research characterizes the composition of metabolites in goat sperm and their alterations induced by the cryopreservation process, offering a critical foundation for further exploring the molecular mechanisms of metabolism influencing the quality and freezing tolerance of goat sperm. Additionally, the impacts of equilibration at low temperature on sperm quality may need more attentions as compared to the freezing and thawing process. Full article
Show Figures

Figure 1

14 pages, 1676 KiB  
Article
Metabolic Shift in Porcine Spermatozoa during Sperm Capacitation-Induced Zinc Flux
by Tyler Weide, Kayla Mills, Ian Shofner, Matthew W. Breitzman and Karl Kerns
Int. J. Mol. Sci. 2024, 25(14), 7919; https://doi.org/10.3390/ijms25147919 - 19 Jul 2024
Cited by 2 | Viewed by 1593
Abstract
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes [...] Read more.
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans. Full article
Show Figures

Figure 1

Back to TopTop