ijms-logo

Journal Browser

Journal Browser

Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 6486

Special Issue Editor


E-Mail Website
Guest Editor
Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
Interests: magnetism; nanomagnetism; superparamagnetism; magnetic relaxation; magnetic nanomaterials (nanoparticles, nanocomposites, nanofluids, nanopowders); advanced magnetic nanostructures; biomagnetism; magnetic bio-nanomaterials; hybrid magnetic bio-nanomaterials in medicine; magnetic biofields of human body; magnetic hyperthermia in cancer therapy; electricity and magnetism; experimental physics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Currently, nanoparticles are of high theoretical and applicative interest; they have multiple applications in nanotechnology and nanomedicine due to their small size (nm to hundreds of nm), which gives them different properties to those of bulk materials. Modern nanobiotechnology enables the preparation and dispersion of nanoparticles in different environments, as well as their biofunctionalization, bioencapsulation, bioconjugation, biosurfactation, etc.; this renders them biocompatible with the biological environment in which they are applied, and enables their manipulation for application in the field of diagnostics, in therapy for various diseases and in nanotheranostics, as well as in alternative cancer therapies.

Thus, this Special Issue aims to highlight current research results in the form of articles, as well as the systematization of recent results in the field in the form of reviews. Also of interest are topics regarding the preparation, characterization and properties of nanoparticles, as well as theoretical and computational studies.

Possible topics include the following:

  • Nanoparticles;
  • Properties of nanoparticles;
  • Methods of obtaining nanoparticles;
  • Characterization techniques;
  • Theoretical models;
  • Computational simulation;
  • Applications in nanomedicine;
  • Applications in nanobiotechnology.

Dr. Costica Caizer
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • properties of nanoparticles
  • methods of obtaining nanoparticles
  • characterization techniques
  • theoretical models
  • computational simulation
  • applications in nanomedicine
  • applications in nanobiotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

25 pages, 7782 KiB  
Article
Bioactive Hybrids Containing Artificial Cell Membranes and Phyto-Gold–Silver Chloride Bio-Nanoparticles
by Marcela-Elisabeta Barbinta-Patrascu, Cornelia Nichita, Monica Enculescu, Valentin-Adrian Maraloiu, Mihaela Bacalum, Camelia Ungureanu, Catalin Constantin Negrila and Irina Zgura
Int. J. Mol. Sci. 2024, 25(22), 11929; https://doi.org/10.3390/ijms252211929 - 6 Nov 2024
Viewed by 503
Abstract
This research targets the need for eco-friendly strategies in the synthesis of bioactive materials, addressing the importance of valorization of vegetal waste. This study focuses on developing biohybrids containing biomimetic lipid vesicles and phytosynthesized gold–silver chloride nanoparticles (AuAgCl NPs) derived from Achillea millefolium [...] Read more.
This research targets the need for eco-friendly strategies in the synthesis of bioactive materials, addressing the importance of valorization of vegetal waste. This study focuses on developing biohybrids containing biomimetic lipid vesicles and phytosynthesized gold–silver chloride nanoparticles (AuAgCl NPs) derived from Achillea millefolium L. extract. By leveraging the natural antioxidant and antimicrobial properties of the plant, the research proposes a sustainable approach to creating materials with potential biomedical applications. The biomimetic membranes were loaded with chlorophyll a, a natural spectral marker. Three types of bioactive materials (biohybrids) were developed by varying the lipid vesicle/AuAgCl NP ratio. Optical (UV-Vis, fluorescence emission, FTIR), structural (XRD), elemental (EDX, XPS), and morphological (TEM) studies were performed to characterize the bio-developed materials. The hydrophobic/hydrophilic characteristics of the samples were investigated by measuring the water contact angle, and their size was estimated by DLS and TEM. Zeta potential measurements were used to evaluate the physical stability of phyto-developed particles. Antioxidant properties of phyto-particles were investigated through the chemiluminescence technique. The obtained biomaterials exhibited high antioxidant activity and antiproliferative activity against HT-29 and B-16 cancer cells. Therapeutic index values were calculated for each biohybrid. Additionally, the bio-prepared hybrids revealed biocidal action against Staphylococcus aureus and Enterococcus faecalis. The phyto-developed biomaterials are promising in biomedical applications, particularly as adjuvants in cancer therapy. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

14 pages, 501 KiB  
Article
Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy
by Maxim Azarkin, Martin Kirakosyan and Vladimir Ryabov
Int. J. Mol. Sci. 2024, 25(17), 9525; https://doi.org/10.3390/ijms25179525 - 2 Sep 2024
Viewed by 717
Abstract
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used [...] Read more.
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio. The mechanism of radiosensitization is assumed to be connected to an enhancement of the absorbed dose due to huge photoelectric cross-sections with gold. Nevertheless, numerous theoretical studies, mostly based on Monte Carlo (MC) simulations, did not provide a consistent and thorough picture of dose enhancement and, therefore, the radiosensitization effect. Radiosensitization by nanoparticles in PT is even less studied than in XRT. Therefore, we investigate the physics picture of GNP-enhanced RT using an MC simulation with Geant4 equipped with the most recent physics models, taking into account a wide range of physics processes relevant for realistic PT and XRT. Namely, we measured dose enhancement factors in the vicinity of GNP, with diameters ranging from 10 nm to 80 nm. The dose enhancement in the vicinity of GNP reaches high values for XRT, while it is very modest for PT. The macroscopic dose enhancement factors for realistic therapeutic GNP concentrations are rather low for all RT scenarios; therefore, other physico-chemical and biological mechanisms should be additionally invoked for an explanation of the radiosensitization effect observed in many experiments. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 8714 KiB  
Review
Biogenic Zinc Oxide Nanoparticles as a Promising Antibacterial Agent: Synthesis and Characterization
by Kunle Okaiyeto, Maria Rosa Gigliobianco and Piera Di Martino
Int. J. Mol. Sci. 2024, 25(17), 9500; https://doi.org/10.3390/ijms25179500 - 31 Aug 2024
Cited by 1 | Viewed by 2428
Abstract
Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing [...] Read more.
Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing interest in biological methods. Interestingly, green synthesis using plants has gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles (ZnO NPs) produced using environmentally friendly methods are more biocompatible and have potential applications as antibacterial agents in the biomedical field. As a result, this review discusses the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques, and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights the challenges and prospects in this innovative research area. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

26 pages, 5180 KiB  
Review
Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy
by Wenzhe Zhao, Kaixuan Li, Liangbo Li, Ruichen Wang, Yang Lei, Hui Yang and Leming Sun
Int. J. Mol. Sci. 2024, 25(14), 7715; https://doi.org/10.3390/ijms25147715 - 14 Jul 2024
Cited by 4 | Viewed by 2410
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing [...] Read more.
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

Back to TopTop