ijms-logo

Journal Browser

Journal Browser

Animal and Plant Cell–Tissue, Organ Specialization and Function: Investigational, Experimental and Medical Aspects, 4th Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 4391

Special Issue Editors


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

The cell, subcellular and extracellular component organization at structural, molecular, chemical and biophysical levels, including the grouping and interrelations of cells in tissues and organs in health and disease, still needs investigations. In this Special Issue, articles on various aspects of cell biology, e.g., cell compartments, organelle and membrane biogenesis and dynamics, macromolecules and their intracellular transport, whole-cell locomotion, cytoskeleton organization, signaling and regulatory cascades, the cell cycle and cell-to-cell communication are especially welcome. Novel insights into the structure, specialization, function and physiology of cells, tissues and organs together with medical and chemistry aspects of cell biology are invited for submission. Environmental and toxicologic effects on tissue and organ function will be of special interest. Integrative actions of gene and their products, regulatory mechanisms as well as their impact on the development, regeneration of tissue structural and functional status, including the use of newly described and advanced methods/techniques, will be especially accepted.

Therefore, in this Special Issue of IJMS, we invite you to submit both review and original papers on the widely understood topic of cell biology.

Prof. Dr. Bartosz Jan Płachno
Prof. Dr. Małgorzata Kotula-Balak
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant and animal cell
  • ultrastructure
  • cell biology
  • cell development
  • cell regeneration
  • cell signaling
  • tissue histology
  • tissue physiology and pathology
  • environmental effects
  • toxicology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3672 KiB  
Article
Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk, Marcin Feldo and Piotr Świątek
Int. J. Mol. Sci. 2024, 25(11), 6089; https://doi.org/10.3390/ijms25116089 - 31 May 2024
Viewed by 952
Abstract
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer [...] Read more.
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer wall is differentiated into several layers, and even cell wall ingrowths are covered by new cell wall layers. Due to changes in the cell wall, these glands are excellent models for studying the specialization of cell walls (microdomains). The main aim of this study was to check if different cell wall layers have a different composition. Antibodies against arabinogalactan proteins (AGPs) were used, including JIM8, JIM13, JIM14, MAC207, and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. Differences in composition were found between the primary cell wall and the cell secondary wall in terminal gland cells. The outermost layer of the cell wall of the terminal cell, which was cuticularized, was devoid of AGPs (JIM8, JIM14). In contrast, the secondary cell wall in terminal cells was rich in AGPs. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of pedestal cells. Our research supports the hypothesis of water secretion by the external glands. Full article
Show Figures

Figure 1

22 pages, 7540 KiB  
Article
Comparison of Anti-Inflammatory and Antibacterial Properties of Raphanus sativus L. Leaf and Root Kombucha-Fermented Extracts
by Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Agnieszka Mokrzyńska, Zofia Nizioł-Łukaszewska, Dariusz Szczepanek, Ireneusz Sowa and Magdalena Wójciak
Int. J. Mol. Sci. 2024, 25(11), 5622; https://doi.org/10.3390/ijms25115622 - 22 May 2024
Cited by 2 | Viewed by 1542
Abstract
In the cosmetics industry, the extract from Raphanus sativus L. is fermented using specific starter cultures. These cosmetic ingredients act as preservatives and skin conditioners. Kombucha is traditionally made by fermenting sweetened tea using symbiotic cultures of bacteria and yeast and is used [...] Read more.
In the cosmetics industry, the extract from Raphanus sativus L. is fermented using specific starter cultures. These cosmetic ingredients act as preservatives and skin conditioners. Kombucha is traditionally made by fermenting sweetened tea using symbiotic cultures of bacteria and yeast and is used in cosmetic products. The aim of this study was to evaluate the cosmetic properties of radish leaf and root extract fermented with the SCOBY. Both unfermented water extracts and extracts after 7, 14, and 21 days of fermentation were evaluated. The analysis of secondary plant metabolites by UPLC-MS showed higher values for ferments than for extracts. A similar relationship was noted when examining the antioxidant properties using DPPH and ABTS radicals and the protective effect against H2O2-induced oxidative stress in fibroblasts and keratinocytes using the fluorogenic dye H2DCFDA. The results also showed no cytotoxicity to skin cells using Alamar Blue and Neutral Red tests. The ability of the samples to inhibit IL-1β and COX-2 activity in LPS-treated fibroblasts was also demonstrated using ELISA assays. The influence of extracts and ferments on bacterial strains involved in inflammatory processes of skin diseases was also assessed. Additionally, application tests were carried out, which showed a positive effect of extracts and ferments on TEWL and skin hydration using a TEWAmeter and corneometer probe. The results obtained depended on the concentration used and the fermentation time. Full article
Show Figures

Figure 1

17 pages, 2212 KiB  
Article
Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L.
by Tadeusz Pomianek, Martyna Zagórska-Dziok, Bartosz Skóra, Aleksandra Ziemlewska, Zofia Nizioł-Łukaszewska, Magdalena Wójciak, Ireneusz Sowa and Konrad A. Szychowski
Int. J. Mol. Sci. 2024, 25(10), 5495; https://doi.org/10.3390/ijms25105495 - 17 May 2024
Cited by 2 | Viewed by 1189
Abstract
Cornus mas L. is a rich source of vitamin C and polyphenols. Due to their health-benefit properties, C. mas L. extracts have been used in, e.g., dermatology and cosmetology, and as a food supplement. Peroxisome proliferator–activated receptor gamma (PPARγ) and its co-activator (PGC-1α) [...] Read more.
Cornus mas L. is a rich source of vitamin C and polyphenols. Due to their health-benefit properties, C. mas L. extracts have been used in, e.g., dermatology and cosmetology, and as a food supplement. Peroxisome proliferator–activated receptor gamma (PPARγ) and its co-activator (PGC-1α) are now suspected to be the main target of active substances from C. mass extracts, especially polyphenols. Moreover, the PPARγ pathway is involved in the development of different diseases, such as type 2 diabetes mellitus (DM2), cancers, skin irritation, and inflammation. Therefore, the aim of the present study was to evaluate the PPARγ pathway activation by the most popular water and ethanol extracts from specific C. mas L. cultivars in an in vitro model of the human normal fibroblast (BJ) cell line. We analyzed the content of biologically active compounds in the extracts using the UPLC-DAD-MS technique and revealed the presence of many polyphenols, including gallic, quinic, protocatechuic, chlorogenic, and ellagic acids as well as iridoids, with loganic acid being the predominant component. In addition, the extracts contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside, and quercetin 3-glucuronide. The water–ethanol dark red extract (DRE) showed the strongest antioxidant activity. Cytotoxicity was assessed in a normal skin cell line, and positive effects of all the extracts with concentrations ranging from 10 to 1000 µg/mL on the cells were shown. Our data show that the studied extracts activate the PPARγ/PGC-1α molecular pathway in BJ cells and, through this mechanism, initiate antioxidant response. Moreover, the activation of this molecular pathway may increase insulin sensitivity in DM2 and reduce skin irritation. Full article
Show Figures

Figure 1

Back to TopTop