ijms-logo

Journal Browser

Journal Browser

Molecular Research on Platelet Activity in Health and Disease

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
Interests: nutrition; platelets; redox state; phenolic compounds; cardiovascular diseases; obesity; metabolic syndrome

Special Issue Information

Dear Colleagues,

Platelets are small anucleated cytoplasmic fragments derived from large megakaryocytes residing in bone marrow that are primarily recognized for their fundamental role in haemostasis and thrombosis. In response to vascular injury, platelets quickly adhere to sub-endothelial matrix proteins, through specific adhesion-signalling receptors whose activation leads to a cascade of events resulting in platelet spreading, granule secretion, aggregation and clot retraction.

To date, a large body of evidence has highlighted the ability of platelets to act as multifunctional cells, which actively influence a widespread range of apparently unrelated patho–physiological events. Platelets, indeed, play a central role in inflammation, an underlying cause in several pathologies (among them cardiovascular disease, obesity, metabolic syndrome and gastrointestinal diseases) as well as in infection, cancer, neurodegeneration and other brain dysfunctions.

For readers, this Special Issue, “Molecular Research on Platelet Activity in Health and Disease”, will provide an up-to-date description of the more intriguing aspects of platelet biology, highly relevant to human diseases.

Prof. Dr. Isabella Savini
Dr. Valeria Gasperi
Prof. Dr. Maria Valeria Catani
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Platelets
  • Hemostasis
  • Cancer
  • MicroRNA
  • Inflammatory diseases
  • Cell-to-cell crosstalk
  • Endothelium
  • Infection
  • Brain disease

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 156 KiB  
Editorial
Molecular Research on Platelet Activity in Health and Disease
by Maria Valeria Catani, Isabella Savini and Valeria Gasperi
Int. J. Mol. Sci. 2020, 21(11), 3804; https://doi.org/10.3390/ijms21113804 - 27 May 2020
Cited by 2 | Viewed by 1877
Abstract
This editorial summarizes and discusses the themes of eleven articles (five reviews and six original studies) published in the Special Issue “Molecular Research On Platelet Activity in Health and Disease”. They give an international picture of the up-to-date understanding of (i) platelet signalling [...] Read more.
This editorial summarizes and discusses the themes of eleven articles (five reviews and six original studies) published in the Special Issue “Molecular Research On Platelet Activity in Health and Disease”. They give an international picture of the up-to-date understanding of (i) platelet signalling under physiological and pathological conditions, (ii) novel technologies for monitoring platelet functions and (iii) clinical applications of platelet-based-therapy for management of pathological conditions, not directly related to haemostasis and thrombosis. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)

Research

Jump to: Editorial, Review

21 pages, 4916 KiB  
Article
The MICELI (MICrofluidic, ELectrical, Impedance): Prototyping a Point-of-Care Impedance Platelet Aggregometer
by Yana Roka-Moiia, Silvia Bozzi, Chiara Ferrari, Gabriele Mantica, Annalisa Dimasi, Marco Rasponi, Andrea Santoleri, Mariangela Scavone, Filippo Consolo, Marco Cattaneo, Marvin J. Slepian and Alberto Redaelli
Int. J. Mol. Sci. 2020, 21(4), 1174; https://doi.org/10.3390/ijms21041174 - 11 Feb 2020
Cited by 5 | Viewed by 4419
Abstract
As key cellular elements of hemostasis, platelets represent a primary target for thrombosis and bleeding management. Currently, therapeutic manipulations of platelet function (antithrombotic drugs) and count (platelet transfusion) are performed with limited or no real-time monitoring of the desired outcome at the point-of-care. [...] Read more.
As key cellular elements of hemostasis, platelets represent a primary target for thrombosis and bleeding management. Currently, therapeutic manipulations of platelet function (antithrombotic drugs) and count (platelet transfusion) are performed with limited or no real-time monitoring of the desired outcome at the point-of-care. To address the need, we have designed and fabricated an easy-to-use, accurate, and portable impedance aggregometer called “MICELI” (MICrofluidic, ELectrical, Impedance). It improves on current platelet aggregation technology by decreasing footprint, assay complexity, and time to obtain results. The current study aimed to optimize the MICELI protocol; validate sensitivity to aggregation agonists and key blood parameters, i.e., platelet count and hematocrit; and verify the MICELI operational performance as compared to commercial impedance aggregometry. We demonstrated that the MICELI aggregometer could detect platelet aggregation in 250 μL of whole blood or platelet-rich plasma, stimulated by ADP, TRAP-6, collagen, epinephrine, and calcium ionophore. Using hirudin as blood anticoagulant allowed higher aggregation values. Aggregation values obtained by the MICELI strongly correlated with platelet count and were not affected by hematocrit. The operational performance comparison of the MICELI and the Multiplate® Analyzer demonstrated strong correlation and similar interdonor distribution of aggregation values obtained between these devices. With the proven reliability of the data obtained by the MICELI aggregometer, it can be further translated into a point-of-care diagnostic device aimed at monitoring platelet function in order to guide pharmacological hemostasis management and platelet transfusions. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

11 pages, 4073 KiB  
Article
Platelet Adhesion and Thrombus Formation in Microchannels: The Effect of Assay-Dependent Variables
by Mariangela Scavone, Silvia Bozzi, Tatiana Mencarini, Gianmarco Podda, Marco Cattaneo and Alberto Redaelli
Int. J. Mol. Sci. 2020, 21(3), 750; https://doi.org/10.3390/ijms21030750 - 23 Jan 2020
Cited by 15 | Viewed by 3314
Abstract
Microfluidic flow chambers (MFCs) allow the study of platelet adhesion and thrombus formation under flow, which may be influenced by several variables. We developed a new MFC, with which we tested the effects of different variables on the results of platelet deposition and [...] Read more.
Microfluidic flow chambers (MFCs) allow the study of platelet adhesion and thrombus formation under flow, which may be influenced by several variables. We developed a new MFC, with which we tested the effects of different variables on the results of platelet deposition and thrombus formation on a collagen-coated surface. Methods: Whole blood was perfused in the MFC over collagen Type I for 4 min at different wall shear rates (WSR) and different concentrations of collagen-coating solutions, keeping blood samples at room temperature or 37 °C before starting the experiments. In addition, we tested the effects of the antiplatelet agent acetylsalicylic acid (ASA) (antagonist of cyclooxygenase-1, 100 µM) and cangrelor (antagonist of P2Y12, 1 µM). Results: Platelet deposition on collagen (I) was not affected by the storage temperature of the blood before perfusion (room temperature vs. 37 °C); (II) was dependent on a shear rate in the range between 300/s and 1700/s; and (III) was influenced by the collagen concentration used to coat the microchannels up to a value of 10 µg/mL. ASA and cangrelor did not cause statistically significant inhibition of platelet accumulation, except for ASA at low collagen concentrations. Conclusions: Platelet deposition on collagen-coated surfaces is a shear-dependent process, not influenced by the collagen concentration beyond a value of 10 µg/mL. However, the inhibitory effect of antiplatelet drugs is better observed using low concentrations of collagen. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

20 pages, 4330 KiB  
Article
Feedback Regulation of Syk by Protein Kinase C in Human Platelets
by Stephanie Makhoul, Stephanie Dorschel, Stepan Gambaryan, Ulrich Walter and Kerstin Jurk
Int. J. Mol. Sci. 2020, 21(1), 176; https://doi.org/10.3390/ijms21010176 - 25 Dec 2019
Cited by 14 | Viewed by 7612
Abstract
The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain [...] Read more.
The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Graphical abstract

11 pages, 1975 KiB  
Communication
The Integrin Activating Protein Kindlin-3 Is Cleaved in Human Platelets during ST-Elevation Myocardial Infarction
by Bjoern F. Kraemer, Tobias Lamkemeyer, Mirita Franz-Wachtel and Stephan Lindemann
Int. J. Mol. Sci. 2019, 20(24), 6154; https://doi.org/10.3390/ijms20246154 - 6 Dec 2019
Cited by 5 | Viewed by 2441
Abstract
Kindlins are important proteins for integrin signaling and regulation of the cytoskeleton, but we know little about their precise function and regulation in platelets during acute ischemic events. In this work, we investigated kindlin-3 protein levels in platelets isolated from patients with ST-elevation [...] Read more.
Kindlins are important proteins for integrin signaling and regulation of the cytoskeleton, but we know little about their precise function and regulation in platelets during acute ischemic events. In this work, we investigated kindlin-3 protein levels in platelets isolated from patients with ST-elevation myocardial infarction (STEMI) compared to patients with non-ischemic chest pain. Platelets from twelve patients with STEMI and twelve patients with non-ischemic chest pain were isolated and analyzed for kindlin-3 protein levels and intracellular localization by immunoblotting and two-dimensional gel electrophoresis. Platelet proteome analysis by two-dimensional gel electrophoresis and protein sequencing identified kindlin-3 as a protein that is cleaved in platelets from patients with myocardial infarction. Kindlin-3 full-length protein was significantly decreased in patients with STEMI compared to patients with non-ischemic chest pain (1.0 ± 0.2 versus 0.28 ± 0.2, p < 0.05) by immunoblotting. Kindlin-3 showed a differential distribution and was primarily cleaved in the cytosolic and membrane compartment of platelets in myocardial infarction. Platelet activation with thrombin alone did not affect kindlin-3 protein levels. The present study demonstrates that kindlin-3 protein levels become significantly reduced in platelets of patients with myocardial infarction compared to controls. The results suggest that kindlin-3 cleavage in platelets is associated with the ischemic event of myocardial infarction. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

10 pages, 1645 KiB  
Communication
Heat-Shock Protein 27 (HSPB1) Is Upregulated and Phosphorylated in Human Platelets during ST-Elevation Myocardial Infarction
by Bjoern F. Kraemer, Hanna Mannell, Tobias Lamkemeyer, Mirita Franz-Wachtel and Stephan Lindemann
Int. J. Mol. Sci. 2019, 20(23), 5968; https://doi.org/10.3390/ijms20235968 - 27 Nov 2019
Cited by 11 | Viewed by 3017
Abstract
Heat-shock proteins are a family of proteins which are upregulated in response to stress stimuli including inflammation, oxidative stress, or ischemia. Protective functions of heat-shock proteins have been studied in vascular disease models, and malfunction of heat-shock proteins is associated with vascular disease [...] Read more.
Heat-shock proteins are a family of proteins which are upregulated in response to stress stimuli including inflammation, oxidative stress, or ischemia. Protective functions of heat-shock proteins have been studied in vascular disease models, and malfunction of heat-shock proteins is associated with vascular disease development. Heat-shock proteins however have not been investigated in human platelets during acute myocardial infarction ex vivo. Using two-dimensional electrophoresis and immunoblotting, we observed that heat-shock protein 27 (HSPB1) levels and phosphorylation are significantly increased in platelets of twelve patients with myocardial infarction compared to patients with nonischemic chest pain (6.4 ± 1.0-fold versus 1.0 ± 0.9-fold and 5.9 ± 1.8-fold versus 1.0 ± 0.8-fold; p < 0.05). HSP27 (HSPB1) showed a distinct and characteristic intracellular translocation from the cytoskeletal fraction into the membrane fraction of platelets during acute myocardial infarction that did not occur in the control group. In this study, we could demonstrate for the first time that HSP27 (HSPB1) is upregulated and phosphorylated in human platelets during myocardial infarction on a cellular level ex vivo with a characteristic intracellular translocation pattern. This HSP27 (HSPB1) phenotype in platelets could thus represent a measurable stress response in myocardial infarction and potentially other acute ischemic events. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

9 pages, 931 KiB  
Article
Platelet Proteasome Activity and Metabolism Is Upregulated during Bacterial Sepsis
by Katharina Grundler Groterhorst, Hanna Mannell, Joachim Pircher and Bjoern F Kraemer
Int. J. Mol. Sci. 2019, 20(23), 5961; https://doi.org/10.3390/ijms20235961 - 27 Nov 2019
Cited by 10 | Viewed by 2958
Abstract
Dysregulation of platelet function can contribute to the disease progression in sepsis. The proteasome represents a critical and vital element of cellular protein metabolism in platelets and its proteolytic activity has been associated with platelet function. However, the role of the platelet proteasome [...] Read more.
Dysregulation of platelet function can contribute to the disease progression in sepsis. The proteasome represents a critical and vital element of cellular protein metabolism in platelets and its proteolytic activity has been associated with platelet function. However, the role of the platelet proteasome as well as its response to infection under conditions of sepsis have not been studied so far. We measured platelet proteasome activity by fluorescent substrates, degradation of poly-ubiquitinated proteins and cleavage of the proteasome substrate Talin-1 in the presence of living E. coli strains and in platelets isolated from sepsis patients. Upregulation of the proteasome activator PA28 (PSME1) was assessed by quantitative real-time PCR in platelets from sepsis patients. We show that co-incubation of platelets with living E. coli (UTI89) results in increased degradation of poly-ubiquitinated proteins and cleavage of Talin-1 by the proteasome. Proteasome activity and cleavage of Talin-1 was significantly increased in α-hemolysin (HlyA)-positive E. coli strains. Supporting these findings, proteasome activity was also increased in platelets of patients with sepsis. Finally, the proteasome activator PA28 (PSME1) was upregulated in this group of patients. In this study we demonstrate for the first time that the proteasome in platelets is activated in the septic milieu. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

23 pages, 4093 KiB  
Review
Platelet Features and Derivatives in Osteoporosis: A Rational and Systematic Review on the Best Evidence
by Francesca Salamanna, Melania Maglio, Maria Sartori, Matilde Tschon and Milena Fini
Int. J. Mol. Sci. 2020, 21(5), 1762; https://doi.org/10.3390/ijms21051762 - 4 Mar 2020
Cited by 18 | Viewed by 9197
Abstract
Background: With the increase in aging population, the rising prevalence of osteoporosis (OP) has become an important medical issue. Accumulating evidence showed a close relationship between OP and hematopoiesis and emerging proofs revealed that platelets (PLTs), unique blood elements, rich in growth [...] Read more.
Background: With the increase in aging population, the rising prevalence of osteoporosis (OP) has become an important medical issue. Accumulating evidence showed a close relationship between OP and hematopoiesis and emerging proofs revealed that platelets (PLTs), unique blood elements, rich in growth factors (GFs), play a critical role in bone remodeling. The aim of this review was to evaluate how PLT features, size, volume, bioactive GFs released, existing GFs in PLTs and PLT derivatives change and behave during OP. Methods: A systematic search was carried out in PubMed, Scopus, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases to identify preclinical and clinical studies in the last 10 years on PLT function/features and growth factor in PLTs and on PLT derivatives during OP. The methodological quality of included studies was assessed by QUIPS tool for assessing risk of bias in the clinical studies and by the SYRCLE tool for assessing risk of bias in animal studies. Results: In the initial search, 2761 studies were obtained, only 47 articles were submitted to complete reading, and 23 articles were selected for the analysis, 13 on PLT function/features and growth factor in PLTs and 10 on PLT derivatives. Risk of bias of almost all animal studies was high, while the in the clinical studies risk of bias was prevalently moderate/low for the most of the studies. The majority of the evaluated studies highlighted a positive correlation between PLT size/volume and bone mineralization and an improvement in bone regeneration ability by using PLTs bioactive GFs and PLT derivatives. Conclusions: The application of PLT features as OP markers and of PLT-derived compounds as therapeutic approach to promote bone healing during OP need to be further confirmed to provide clear evidence for the real efficacy of these interventions and to contribute to the clinical translation. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

43 pages, 589 KiB  
Review
Platelet Concentrates in Musculoskeletal Medicine
by Erminia Mariani and Lia Pulsatelli
Int. J. Mol. Sci. 2020, 21(4), 1328; https://doi.org/10.3390/ijms21041328 - 16 Feb 2020
Cited by 49 | Viewed by 6949
Abstract
Platelet concentrates (PCs), mostly represented by platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are autologous biological blood-derived products that may combine plasma/platelet-derived bioactive components, together with fibrin-forming protein able to create a natural three-dimensional scaffold. These types of products are safely used in [...] Read more.
Platelet concentrates (PCs), mostly represented by platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are autologous biological blood-derived products that may combine plasma/platelet-derived bioactive components, together with fibrin-forming protein able to create a natural three-dimensional scaffold. These types of products are safely used in clinical applications due to the autologous-derived source and the minimally invasive application procedure. In this narrative review, we focus on three main topics concerning the use of platelet concentrate for treating musculoskeletal conditions: (a) the different procedures to prepare PCs, (b) the composition of PCs that is related to the type of methodological procedure adopted and (c) the clinical application in musculoskeletal medicine, efficacy and main limits of the different studies. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
19 pages, 1456 KiB  
Review
RasGRP2 Structure, Function and Genetic Variants in Platelet Pathophysiology
by Matthias Canault and Marie-Christine Alessi
Int. J. Mol. Sci. 2020, 21(3), 1075; https://doi.org/10.3390/ijms21031075 - 6 Feb 2020
Cited by 23 | Viewed by 4781
Abstract
RasGRP2 is calcium and diacylglycerol-regulated guanine nucleotide exchange factor I that activates Rap1, which is an essential signaling-knot in “inside-out” αIIbβ3 integrin activation in platelets. Inherited platelet function disorder caused by variants of RASGRP2 represents a new congenital bleeding disorder referred to as [...] Read more.
RasGRP2 is calcium and diacylglycerol-regulated guanine nucleotide exchange factor I that activates Rap1, which is an essential signaling-knot in “inside-out” αIIbβ3 integrin activation in platelets. Inherited platelet function disorder caused by variants of RASGRP2 represents a new congenital bleeding disorder referred to as platelet-type bleeding disorder-18 (BDPLT18). We review here the structure of RasGRP2 and its functions in the pathophysiology of platelets and of the other cellular types that express it. We will also examine the different pathogenic variants reported so far as well as strategies for the diagnosis and management of patients with BDPLT18. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

23 pages, 2320 KiB  
Review
The “Janus Face” of Platelets in Cancer
by Maria Valeria Catani, Isabella Savini, Valentina Tullio and Valeria Gasperi
Int. J. Mol. Sci. 2020, 21(3), 788; https://doi.org/10.3390/ijms21030788 - 25 Jan 2020
Cited by 35 | Viewed by 6252
Abstract
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor [...] Read more.
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

27 pages, 3362 KiB  
Review
Influence of Cardiometabolic Risk Factors on Platelet Function
by Cristina Barale and Isabella Russo
Int. J. Mol. Sci. 2020, 21(2), 623; https://doi.org/10.3390/ijms21020623 - 17 Jan 2020
Cited by 73 | Viewed by 8218
Abstract
Platelets are key players in the thrombotic processes. The alterations of platelet function due to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events [...] Read more.
Platelets are key players in the thrombotic processes. The alterations of platelet function due to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events in patients with cardiometabolic risk factors. Several lines of evidence strongly correlate metabolic disorders such as obesity, a classical condition of insulin resistance, dyslipidemia, and impaired glucose homeostasis with cardiovascular diseases. The presence of these clinical features together with hypertension and disturbed microhemorrheology are responsible for the prothrombotic tendency due, at least partially, to platelet hyperaggregability and hyperactivation. A number of clinical platelet markers are elevated in obese and type 2 diabetes (T2DM) patients, including the mean platelet volume, circulating levels of platelet microparticles, oxidation products, platelet-derived soluble P-selectin and CD40L, thus contributing to an intersection between obesity, inflammation, and thrombosis. In subjects with insulin resistance and T2DM some defects depend on a reduced sensitivity to mediators—such as nitric oxide and prostacyclin—playing a physiological role in the control of platelet aggregability. Furthermore, other alterations occur only in relation to hyperglycemia. In this review, the main cardiometabolic risk factors, all components of metabolic syndrome involved in the prothrombotic tendency, will be taken into account considering some of the mechanisms involved in the alterations of platelet function resulting in platelet hyperactivation. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease)
Show Figures

Figure 1

Back to TopTop