ijms-logo

Journal Browser

Journal Browser

Genetic Basis and Epidemiology of Myopathies: 3rd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 7059

Special Issue Editors


E-Mail
Guest Editor

Special Issue Information

Dear Colleagues,

Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually appearing from birth, and a static or slowly progressive cognitive decline. Though different candidate genes have now been identified as associated with the various phenotypic and histological expressions of myopathies, the unexpectedly wide genetic and clinical heterogeneity of these disorders calls for more extensive research on the genetic factors influencing their pathogenesis. Furthermore, because of the paucity of neuropsychological data on myopathies, further studies are required to determine the cognitive (sub)domains that are mostly negatively affected, as well as the consistency of cognitive deficits in patients with different types of myopathies. This Special Issue aims at reducing these gaps by collecting studies on the role of genetic factors in the pathogenesis of myopathies as well as on the cognitive impairments that determine the classification of the many forms of myopathies.

Dr. Vasileios Siokas
Dr. Efthimios Dardiotis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

16 pages, 1882 KiB  
Article
Exome Sequencing and Optical Genome Mapping in Molecularly Unsolved Cases of Duchenne Muscular Dystrophy: Identification of a Causative X-Chromosomal Inversion Disrupting the DMD Gene
by Leoni S. Erbe, Sabine Hoffjan, Sören Janßen, Moritz Kneifel, Karsten Krause, Wanda M. Gerding, Kristina Döring, Anne-Katrin Güttsches, Andreas Roos, Elena Buena Atienza, Caspar Gross, Thomas Lücke, Hoa Huu Phuc Nguyen, Matthias Vorgerd and Cornelia Köhler
Int. J. Mol. Sci. 2023, 24(19), 14716; https://doi.org/10.3390/ijms241914716 - 28 Sep 2023
Cited by 9 | Viewed by 2158
Abstract
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD gene. However, in a small subset [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD gene. However, in a small subset of patients clinically diagnosed with DMD, the molecular cause is not identified with these routine methods. Evaluation of the 60 DMD patients in our center revealed three cases without a known genetic cause. DNA samples of these patients were analyzed using whole-exome sequencing (WES) and, if unconclusive, optical genome mapping (OGM). WES led to a diagnosis in two cases: one patient was found to carry a splice mutation in the DMD gene that had not been identified during previous Sanger sequencing. In the second patient, we detected two variants in the fukutin gene (FKTN) that were presumed to be disease-causing. In the third patient, WES was unremarkable, but OGM identified an inversion disrupting the DMD gene (~1.28 Mb) that was subsequently confirmed with long-read sequencing. These results highlight the importance of reanalyzing unsolved cases using WES and demonstrate that OGM is a useful method for identifying large structural variants in cases with unremarkable exome sequencing. Full article
(This article belongs to the Special Issue Genetic Basis and Epidemiology of Myopathies: 3rd Edition)
Show Figures

Figure 1

17 pages, 2994 KiB  
Article
Clinical, Genetic, and Histological Characterization of Patients with Rare Neuromuscular and Mitochondrial Diseases Presenting with Different Cardiomyopathy Phenotypes
by Emanuele Monda, Michele Lioncino, Martina Caiazza, Vincenzo Simonelli, Claudia Nesti, Marta Rubino, Alessia Perna, Alfredo Mauriello, Alberta Budillon, Vincenzo Pota, Giorgia Bruno, Antonio Varone, Vincenzo Nigro, Filippo Maria Santorelli, Giuseppe Pacileo, Maria Giovanna Russo, Giulia Frisso, Simone Sampaolo and Giuseppe Limongelli
Int. J. Mol. Sci. 2023, 24(10), 9108; https://doi.org/10.3390/ijms24109108 - 22 May 2023
Cited by 1 | Viewed by 2116
Abstract
Cardiomyopathies are mostly determined by genetic mutations affecting either cardiac muscle cell structure or function. Nevertheless, cardiomyopathies may also be part of complex clinical phenotypes in the spectrum of neuromuscular (NMD) or mitochondrial diseases (MD). The aim of this study is to describe [...] Read more.
Cardiomyopathies are mostly determined by genetic mutations affecting either cardiac muscle cell structure or function. Nevertheless, cardiomyopathies may also be part of complex clinical phenotypes in the spectrum of neuromuscular (NMD) or mitochondrial diseases (MD). The aim of this study is to describe the clinical, molecular, and histological characteristics of a consecutive cohort of patients with cardiomyopathy associated with NMDs or MDs referred to a tertiary cardiomyopathy clinic. Consecutive patients with a definitive diagnosis of NMDs and MDs presenting with a cardiomyopathy phenotype were described. Seven patients were identified: two patients with ACAD9 deficiency (Patient 1 carried the c.1240C>T (p.Arg414Cys) homozygous variant in ACAD9; Patient 2 carried the c.1240C>T (p.Arg414Cys) and the c.1646G>A (p.Ar549Gln) variants in ACAD9); two patients with MYH7-related myopathy (Patient 3 carried the c.1325G>A (p.Arg442His) variant in MYH7; Patient 4 carried the c.1357C>T (p.Arg453Cys) variant in MYH7); one patient with desminopathy (Patient 5 carried the c.46C>T (p.Arg16Cys) variant in DES); two patients with mitochondrial myopathy (Patient 6 carried the m.3243A>G variant in MT-TL1; Patient 7 carried the c.253G>A (p.Gly85Arg) and the c.1055C>T (p.Thr352Met) variants in MTO1). All patients underwent a comprehensive cardiovascular and neuromuscular evaluation, including muscle biopsy and genetic testing. This study described the clinical phenotype of rare NMDs and MDs presenting as cardiomyopathies. A multidisciplinary evaluation, combined with genetic testing, plays a main role in the diagnosis of these rare diseases, and provides information about clinical expectations, and guides management. Full article
(This article belongs to the Special Issue Genetic Basis and Epidemiology of Myopathies: 3rd Edition)
Show Figures

Figure 1

Other

Jump to: Research

10 pages, 1917 KiB  
Case Report
X-Linked Myotubular Myopathy in a Female Patient with a Pathogenic Variant in the MTM1 Gene
by Polina Chausova, Aysylu Murtazina, Anna Stepanova, Artem Borovicov, Valeriia Kovalskaia, Nina Ryadninskaya, Alena Chukhrova, Oxana Ryzhkova and Aleksander Poliakov
Int. J. Mol. Sci. 2023, 24(9), 8409; https://doi.org/10.3390/ijms24098409 - 7 May 2023
Cited by 1 | Viewed by 1798
Abstract
X-linked centronuclear myopathy is caused by pathogenic variants in the MTM1 gene, which encodes myotubularin, a phosphatidylinositol 3-phosphate (PI3P) phosphatase. This form of congenital myopathy predominantly affects males. This study presents a case of X-linked myotubular myopathy in a female carrier of a [...] Read more.
X-linked centronuclear myopathy is caused by pathogenic variants in the MTM1 gene, which encodes myotubularin, a phosphatidylinositol 3-phosphate (PI3P) phosphatase. This form of congenital myopathy predominantly affects males. This study presents a case of X-linked myotubular myopathy in a female carrier of a pathogenic c.1261-10A>G variant in the MTM1 gene. Full article
(This article belongs to the Special Issue Genetic Basis and Epidemiology of Myopathies: 3rd Edition)
Show Figures

Figure 1

Back to TopTop