ijms-logo

Journal Browser

Journal Browser

Genetic Mutations in Health and Disease

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: 26 May 2025 | Viewed by 1221

Special Issue Editor


E-Mail Website
Guest Editor
Graduate School of Environment, Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
Interests: genetics; neurology; mutation; gene interactions; structure predictions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Genetics play a significant role in the onset and progression of many diseases. While some genetic diseases are caused by mutations in a single gene, many others are associated with multiple genetic factors. Additionally, environmental influences often interplay with genetic predispositions, contributing to the complexity of these diseases.

This Special Issue focuses on the genetic underpinnings of human diseases, including cancer, neurodegenerative disorders, and metabolic conditions. Our aim is to explore the various aspects of genetic mutations, environmental factors, disease diagnosis, and management strategies. Despite advancements in medical science, the treatment of many genetic diseases remains challenging, as effective therapies are still lacking for several conditions. However, gene therapy presents a promising avenue for disease management and potential cures.

We invite the submission of review articles, research articles, and case reports that address these topics. Through this collection, we hope to advance our understanding of the genetic basis of diseases and contribute to the development of innovative diagnostic and therapeutic approaches.

Dr. Eva Bagyinszky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic diseases
  • mutations
  • genetic screening
  • structure prediction
  • haploinsufficeincy
  • germline mutations
  • somatic mutations
  • gene enviroment interaction
  • gene-gene interations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2535 KiB  
Article
The Avoidance of Purine Stretches by Cancer Mutations
by Aleksandr V. Vikhorev, Ivan V. Savelev, Oksana O. Polesskaya, Michael M. Rempel, Richard A. Miller, Alexandre A. Vetcher and Max Myakishev-Rempel
Int. J. Mol. Sci. 2024, 25(20), 11050; https://doi.org/10.3390/ijms252011050 - 15 Oct 2024
Viewed by 558
Abstract
Purine stretches, sequences of adenine (A) and guanine (G) in DNA, play critical roles in binding regulatory protein factors and influence gene expression by affecting DNA folding. This study investigates the relationship between purine stretches and cancer development, considering the aromaticity of purines, [...] Read more.
Purine stretches, sequences of adenine (A) and guanine (G) in DNA, play critical roles in binding regulatory protein factors and influence gene expression by affecting DNA folding. This study investigates the relationship between purine stretches and cancer development, considering the aromaticity of purines, quantified by methods like Hückel’s rule and NICS calculations, and the importance of the flanking sequence context. A pronounced avoidance of long purine stretches by typical cancer mutations was observed in public data on the intergenic regions of cancer patients, suggesting a role of intergenic sequences in chromatin reorganization and gene regulation. A statistically significant shortening of purine stretches in cancerous tumors (p value < 0.0001) was found. The insights into the aromatic nature of purines and their stacking energies explain the role of purine stretches in DNA structure, contributing to their role in cancer progression. This research lays the groundwork for understanding the nature of purine stretches, emphasizing their importance in gene regulation and chromatin restructuring, and offers potential avenues for novel cancer therapies and insights into cancer etiology. Full article
(This article belongs to the Special Issue Genetic Mutations in Health and Disease)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 3159 KiB  
Review
Haploinsufficiency and Alzheimer’s Disease: The Possible Pathogenic and Protective Genetic Factors
by Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2024, 25(22), 11959; https://doi.org/10.3390/ijms252211959 - 7 Nov 2024
Viewed by 449
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (APP), Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E (APOE), several other genes such as [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (APP), Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E (APOE), several other genes such as Sortilin-related receptor 1 (SORL1), Phospholipid-transporting ATPase ABCA7 (ABCA7), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Phosphatidylinositol-binding clathrin assembly protein (PICALM), and clusterin (CLU) were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms. While it was traditionally thought that heterozygosity in autosomal recessive mutations does not lead to disease, haploinsufficiency was linked to several conditions, including cancer, autism, and intellectual disabilities, indicating that a single functional gene copy may be insufficient for normal cellular functions. In AD, the haploinsufficiency of genes such as ABCA7 and SORL1 may play significant yet under-explored roles. Paradoxically, heterozygous knockouts of PSEN1 or PSEN2 can impair synaptic plasticity and alter the expression of genes involved in oxidative phosphorylation and cell adhesion. Animal studies examining haploinsufficient AD risk genes, such as vacuolar protein sorting-associated protein 35 (VPS35), sirtuin-3 (SIRT3), and PICALM, have shown that their knockout can exacerbate neurodegenerative processes by promoting amyloid production, accumulation, and inflammation. Conversely, haploinsufficiency in APOE, beta-secretase 1 (BACE1), and transmembrane protein 59 (TMEM59) was reported to confer neuroprotection by potentially slowing amyloid deposition and reducing microglial activation. Given its implications for other neurodegenerative diseases, the role of haploinsufficiency in AD requires further exploration. Modeling the mechanisms of gene knockout and monitoring their expression patterns is a promising approach to uncover AD-related pathways. However, challenges such as identifying susceptible genes, gene–environment interactions, phenotypic variability, and biomarker analysis must be addressed. Enhancing model systems through humanized animal or cell models, utilizing advanced research technologies, and integrating multi-omics data will be crucial for understanding disease pathways and developing new therapeutic strategies. Full article
(This article belongs to the Special Issue Genetic Mutations in Health and Disease)
Show Figures

Figure 1

Back to TopTop