ijms-logo

Journal Browser

Journal Browser

Pathogenesis and Treatment of Dry Eye Disease: Focus on Molecular Aspects

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (20 May 2023) | Viewed by 5602

Special Issue Editor

Special Issue Information

Dear Colleagues,

With the increasing number of molecules being discovered in or on the ocular surface, their potential or proven involvement in the pathophysiology of dry eye is still only partly understood. This Special Issue focuses on the task of collecting knowledge about the currently known molecules; identifying their diversity; and highlighting suggested, found, or proven evidence of their position in the development or treatment of dry eye as a disease. As a reflection of the state of the art in the field, better insight into the molecular aspects could significantly help to improve our understanding of this complicated disease that is of major medical and socioeconomic importance.

Dr. Gysbert Van Setten
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dry eye disease
  • pathophysiology
  • treatment
  • molecules in or on the ocular surface
  • tear film and inflammation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2538 KiB  
Article
Lactobacillus fermentum HY7302 Improves Dry Eye Symptoms in a Mouse Model of Benzalkonium Chloride-Induced Eye Dysfunction and Human Conjunctiva Epithelial Cells
by Kippeum Lee, Ji Woong Jeong, Jae Jung Shim, Hyun Sook Hong, Joo Yun Kim and Jung Lyoul Lee
Int. J. Mol. Sci. 2023, 24(12), 10378; https://doi.org/10.3390/ijms241210378 - 20 Jun 2023
Cited by 6 | Viewed by 2518
Abstract
(1) We investigated the effects of the Lactobacillus fermentum HY7302 (HY7302) in a mouse model of benzalkonium chloride (BAC)-induced dry eye, and the possibility of using HY7302 as a food supplement for preventing dry eye. (2) The ocular surface of Balb/c mice was [...] Read more.
(1) We investigated the effects of the Lactobacillus fermentum HY7302 (HY7302) in a mouse model of benzalkonium chloride (BAC)-induced dry eye, and the possibility of using HY7302 as a food supplement for preventing dry eye. (2) The ocular surface of Balb/c mice was exposed to 0.2% BAC for 14 days to induce dry eye (n = 8), and the control group was treated with the same amount of saline (n = 8). HY7302 (1 × 109 CFU/kg/day, 14 days, n = 8) was orally administered daily to the mice, and omega-3 (200 mg/kg/day) was used as a positive control. To understand the mechanisms by which HY7302 inhibits BAC-induced dry eye, we performed an in vitro study using a human conjunctival cell line (clone-1-5c-4). (3) The probiotic HY7302 improved the BAC-induced decreases in the corneal fluorescein score and tear break-up time. In addition, the lactic acid bacteria increased tear production and improved the detached epithelium. Moreover, HY7302 lowered the BAC-induced increases in reactive oxygen species production in a conjunctival cell line and regulated the expression of several apoptosis-related factors, including phosphorylated protein kinase B (AKT), B-cell lymphoma protein 2 (Bcl-2), and activated caspase 3. Also, HY7302 alleviated the expression of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and IL-8, and also regulated the matrix metallopeptidase-9 production in the conjunctival cell line. (4) In this study, we showed that L. fermentum HY7302 helps prevent dry eye disease by regulating the expression of pro-inflammatory and apoptotic factors, and could be used as a new functional food composition to prevent dry eye disease. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 1440 KiB  
Review
NLRP3 Inflammasome as a Potential Therapeutic Target in Dry Eye Disease
by Dian Zhuang, Stuti L. Misra, Odunayo O. Mugisho, Ilva D. Rupenthal and Jennifer P. Craig
Int. J. Mol. Sci. 2023, 24(13), 10866; https://doi.org/10.3390/ijms241310866 - 29 Jun 2023
Cited by 12 | Viewed by 2526
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder arising from numerous interrelated underlying pathologies that trigger a self-perpetuating cycle of instability, hyperosmolarity, and ocular surface damage. Associated ocular discomfort and visual disturbance contribute negatively to quality of life. Ocular surface inflammation [...] Read more.
Dry eye disease (DED) is a multifactorial ocular surface disorder arising from numerous interrelated underlying pathologies that trigger a self-perpetuating cycle of instability, hyperosmolarity, and ocular surface damage. Associated ocular discomfort and visual disturbance contribute negatively to quality of life. Ocular surface inflammation has been increasingly recognised as playing a key role in the pathophysiology of chronic DED. Current readily available anti-inflammatory agents successfully relieve symptoms, but often without addressing the underlying pathophysiological mechanism. The NOD-like receptor protein-3 (NLRP3) inflammasome pathway has recently been implicated as a key driver of ocular surface inflammation, as reported in pre-clinical and clinical studies of DED. This review discusses the intimate relationship between DED and inflammation, highlights the involvement of the inflammasome in the development of DED, describes existing anti-inflammatory therapies and their limitations, and evaluates the potential of the inflammasome in the context of the existing anti-inflammatory therapeutic landscape as a therapeutic target for effective treatment of the disease. Full article
Show Figures

Figure 1

Back to TopTop