hiPSC-Derived Cells as Models for Drug Discovery 2.0
A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".
Deadline for manuscript submissions: closed (28 February 2023) | Viewed by 65847
Special Issue Editor
Interests: reprogramming; differentiation; Brain Blood Barrier (BBB); iPSC; drug discovery; disease in a dish model
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
More than 85% of pre-clinically tested drugs, fail during clinical trials, which results in a long and inefficient and costly process, suggesting that animal models are often poor predictors of human biology. The ability to perform research on human is limited by the lack of physiologically relevant cells (especially the development and assessment of human brain cells and human heart cells). Currently, there are technologies to reprogram adult, somatic cells (e.g. skin biopsy, blood cells, etc) back into a pluripotent stage, termed induced pluripotent stem cells (iPSCs), and to differentiate pluripotent cells in vitro into many cell types of the body like heart, muscle, brain cells, etc. These capabilities opened a new era in human disease modeling.
For this Special Issue, we would like to invite papers that follow this concept: To use iPSC-derived cells (cardiomyocytes, fibroblasts, glial cells, neurons, astrocytes, brain microvascular endothelial cells and more) as disease models to screen leads for drugs.
Suggest models like, but not limited to:
- A blood-brain-barrier (BBB) model composed of iPSC-derived neurons, astrocytes and brain microvascular endothelial cells (iBMECs) to predict if drugs penetrate or damage the BBB.
- Neuro-regeneration vs neurodegeneration: hiPSC-derived neurological disease models, models for Traumatic Brain Injury (TBI), to suggest compounds that will follow the concept of inducing Neuro-regeneration instead of inhibiting neuro-degeneration.
- hiPSC-derived sensory cells for identifying pain relievers
- hiPSC-derived microglia cells for treating neurological diseases
- 3D models for wound healing, drug discovery, and more
Suggest methodologies for monitoring drug effects in iPSC-derived disease models:
e.g. Following screening compounds, iPSC-derived neural cells will be tested for differentiation potential, proliferation and viability by quantification of protein expression, such as βIII-tubulin for neurons and GFAP for astrocytes. To assess functionality of the cells following drug exposure, Microelectrode arrays (MEA) recording for measuring excitability of neuronal cells and cellular permeability and resistance of iBMECs will be monitored.
Dr. Rivka Ofir
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- iPSC
- human disease models
- drug discovery
- glia cells
- neurons
- cardiomyocytes
- heaptocytes
- blood-brain-barrier
- iBMEC
- astrocytes
- 3D models
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.