Nano-Design of Transition Metal Oxides for Energy Storage and Catalytic Application

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Inorganic Solid-State Chemistry".

Deadline for manuscript submissions: closed (15 January 2025) | Viewed by 5565

Special Issue Editor


E-Mail Website
Guest Editor
School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Interests: nanomaterials for electrochemical energy storage; transition metal oxides; transmissiom electron microscopy

Special Issue Information

Dear Colleagues,

Transition metal oxides play a critical role in the fields of energy storage and catalysis, owing to their exceptional properties and versatility. The significance of nano-designing for these materials cannot be overstated regarding achieving efficient energy storage and enhancing catalytic activity. By precisely manipulating factors such as size, morphology, doping, composition, and surface characteristics at the nanoscale, nanoengineered transition metal oxides exhibit an enlarged surface area, improved charge transfer kinetics, and tailored electronic properties, thereby enabling higher energy storage capacity, accelerated reaction rates, and superior selectivity in catalytic processes. Furthermore, the integration of multi-components at the nanoscale (HEOs, etc.) and the deliberate introduction of controlled defects lead to synergistic effects and optimized redox reactions, further augmenting their performance.

In this Special Issue, we aim to comprehensively cover the latest advancements in all these aspects of nano-design/engineering by hosting a mix of original research articles and critical reviews.

Prof. Dr. Zhenzhong Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanostructure
  • functional oxides
  • energy storage
  • catalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 19149 KiB  
Article
Heterostructure Based of Ti-TiO2(NW)/rGO Hybrid Materials for Electrochemical Applications
by Mina-Ionela Morariu (Popescu), Mircea Nicolaescu, Corina Orha, Carmen Lăzău, Narcis Duteanu and Cornelia Bandas
Inorganics 2025, 13(2), 31; https://doi.org/10.3390/inorganics13020031 - 22 Jan 2025
Viewed by 351
Abstract
This study investigated a hybrid electrode based on titanium/titanium dioxide nanowires/reduced graphene oxide (Ti-TiO2(NW)/rGO) that was developed in two stages. The Ti-TiO2(NW)/rGO was obtained by hydrothermal treatment in a mixed solution of H2O2 and melamine for [...] Read more.
This study investigated a hybrid electrode based on titanium/titanium dioxide nanowires/reduced graphene oxide (Ti-TiO2(NW)/rGO) that was developed in two stages. The Ti-TiO2(NW)/rGO was obtained by hydrothermal treatment in a mixed solution of H2O2 and melamine for Ti-TiO2 support, followed by a simple spin-coating deposition method and thermal oxidation in a controlled atmosphere of nitrogen gas (99%). The as-prepared structures of electrodes were characterized using ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). In addition, the electrochemical behavior was assessed by cyclic voltammetry (CV) in a 1M HNO3-supporting electrolyte and in the presence of 4 mM K4Fe(CN)6 3H2O to determine the electroactive surface area and apparent diffusion coefficient of the hybrid electrode. The development of the Ti-TiO2(NW)/rGO hybrid electrode provides a sensitive method for photo-electrooxidation of doxorubicin due to exploiting the synergistic and remarkable properties of the nanowires of TiO2 and of reduced graphene oxide (rGO) layer on the electrode surface. Full article
Show Figures

Figure 1

12 pages, 2694 KiB  
Article
Dielectric Spectroscopy of Non-Stoichiometric SrMnO3 Thin Films
by Shuang Zeng, Jing Yang, Qingqing Liu, Jiawei Bai, Wei Bai, Yuanyuan Zhang and Xiaodong Tang
Inorganics 2024, 12(3), 71; https://doi.org/10.3390/inorganics12030071 - 27 Feb 2024
Viewed by 1703
Abstract
The dielectric properties of non-stoichiometric SrMnO3 (SMO) thin films grown by molecular beam epitaxy were systematically investigated. Especially, the effects of cation stoichiometry-induced diverse types and densities of defects on the dielectric properties of SMO films were revealed. Two anomalous dielectric relaxation [...] Read more.
The dielectric properties of non-stoichiometric SrMnO3 (SMO) thin films grown by molecular beam epitaxy were systematically investigated. Especially, the effects of cation stoichiometry-induced diverse types and densities of defects on the dielectric properties of SMO films were revealed. Two anomalous dielectric relaxation behaviors were observed at different temperatures in both Sr-rich and Mn-rich samples. High-temperature dielectric relaxation, resulting from a short-range Mn-related Jahn–Teller (JT) polaron hopping motion, was reinforced by an enhancement of JT polaron density in the Sr-rich film, which contained abundant SrO Ruddlesden–Popper (R-P) stacking faults. However, an excessive number of disordered Sr vacancy clusters in Mn-rich thin film suppressed the hopping path of JT polarons and enormously weakened this dielectric relaxation. Thus, The Sr-rich film demonstrated a higher dielectric constant and dielectric loss than the Mn-rich film. In addition, low-temperature dielectric relaxation may be attributed to the polarization/charge glass state. Full article
Show Figures

Graphical abstract

13 pages, 6616 KiB  
Article
A Core and Valence-Level Spectroscopy Study of the Enhanced Reduction of CeO2 by Iron Substitution—Implications for the Thermal Water-Splitting Reaction
by Hicham Idriss
Inorganics 2024, 12(2), 42; https://doi.org/10.3390/inorganics12020042 - 27 Jan 2024
Cited by 1 | Viewed by 1992
Abstract
The reduction of Ce cations in CeO2 can be enhanced by their partial substitution with Fe cations. The enhanced reduction of Ce cations results in a considerable increase in the reaction rates for the thermal water-splitting reaction when compared to CeO2 [...] Read more.
The reduction of Ce cations in CeO2 can be enhanced by their partial substitution with Fe cations. The enhanced reduction of Ce cations results in a considerable increase in the reaction rates for the thermal water-splitting reaction when compared to CeO2 alone. This mixed oxide has a smaller crystallite size when compared to CeO2, in addition to a smaller lattice size. In this work, two Fe-substituted Ce oxides are studied (Ce0.95Fe0.05O2-δ and Ce0.75Fe0.25O2-δ; δ < 0.5) by core and valence level spectroscopy in their as-prepared and Ar-ion-sputtered states. Ar ion sputtering substantially increases Ce4f lines at about 1.5 eV below the Fermi level. In addition, it is found that the XPS Ce5p/O2s ratio is sensitive to the degree of reduction, most likely due to a higher charge transfer from the oxygen to Ce ions upon reduction. Quantitatively, it is also found that XPS Ce3d of the fraction of Ce3+ (uo, u′ and vo, v′) formed upon Ar ion sputtering and the ratio of Ce5p/O2s lines are higher for reduced Ce0.95Fe0.05O2-δ than for reduced Ce0.75Fe0.25O2-δ. XPS Fe2p showed, however, no preferential increase for Fe3+ reduction to Fe0 with increasing time for both oxides. Since water splitting was higher on Ce0.95Fe0.05O2-δ when compared to Ce0.75Fe0.25O2-δ, it is inferred that the reaction centers for the thermal water splitting to hydrogen are the reduced Ce cations and not the reduced Fe cations. These reduced Ce cations can be tracked by their XPS Ce5p/O2s ratio in addition to the common XPS Ce3d lines. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 7814 KiB  
Review
Aluminum-Nitride-Based Semiconductors: Growth Processes, Ferroelectric Properties, and Performance Enhancements
by Luyi Wang, Jinhong Cheng, Ke Qu, Qingfeng Zhu, Bobo Tian and Zhenzhong Yang
Inorganics 2025, 13(2), 29; https://doi.org/10.3390/inorganics13020029 - 21 Jan 2025
Viewed by 538
Abstract
Aluminum nitride (AlN)-based ferroelectric films offer significant advantages, including compatibility with CMOS back-end processes, potential for sustainable miniaturization, and intrinsic stability in the ferroelectric phase. As promising emerging materials, they have attracted considerable attention for their broad application potential in nonvolatile ferroelectric memories. [...] Read more.
Aluminum nitride (AlN)-based ferroelectric films offer significant advantages, including compatibility with CMOS back-end processes, potential for sustainable miniaturization, and intrinsic stability in the ferroelectric phase. As promising emerging materials, they have attracted considerable attention for their broad application potential in nonvolatile ferroelectric memories. However, several key scientific and technological challenges remain, including the preparation of single-crystal materials, epitaxial growth, and doping, which hinder their progress in critical ferroelectric devices. To accelerate their development, further research is needed to elucidate the underlying physical mechanisms, such as growth dynamics and ferroelectric properties. This paper provides a comprehensive review of the preparation methods of AlN-based ferroelectric films, covering AlN, Al1−xScxN, Al1−xBxN, YxAl1−xN, and ScxAlyGa1−x−yN. We systematically analyze the similarities, differences, advantages, and limitations of various growth techniques. Furthermore, the ferroelectric properties of AlN and its doped variants are summarized and compared. Strategies for enhancing the ferroelectric performance of AlN-based films are discussed, with a focus on coercive field regulation under stress, suppression of leakage current, fatigue mechanism, and long-term stability. Then, a brief overview of the wide range of applications of AlN-based thin films in electronic and photonic devices is presented. Finally, the challenges associated with the commercialization of AlN-based ferroelectrics are presented, and critical issues for future research are outlined. By synthesizing insights on growth methods, ferroelectric properties, enhancement strategies, and applications, this review aims to facilitate the advancement and practical application of AlN-based ferroelectric materials and devices. Full article
Show Figures

Figure 1

Back to TopTop