Biomedical Composites: Material Science and Corrosion Resistance Aspects, Volume II

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Biocomposites".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 10118

Special Issue Editors


E-Mail
Guest Editor
Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
Interests: polymer electrolytes; electrode materials; supercapacitors; hydrogen generation using waste metals

Special Issue Information

Dear Colleagues,

The aim of the Special Issue on “Biomedical Composites: Material Science and Corrosion Resistance Aspects” is to collect high-quality papers and reviews on the theoretical and experimental study of composite biomedical materials evidencing recent progresses in material science and electrochemical biocorrosion aspects. The use of composite biomaterials is finalized to solve the constraints of single materials by highlighting their functionality in the human body environment. All research groups with different backgrounds working in this area are invited to propose to the Special Issue the development of their research on all types of biomedical composite materials with both theoretical and experimental approaches. 

Potential topics include but are not limited to:

  • Synthesis of composites for biomedical applications;
  • Composite coatings with improved biocorrosion resistance;
  • Physicochemical, electrochemical, mechanical, tribological, biological, structural and functional characterization of biomedical composites;
  • Theoretical modeling of the synthesis processes or the functioning of composite biomaterials in the human body.

Prof. Dr. Patrizia Bocchetta
Dr. Meenal Gupta
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomedical
  • composites
  • metal composites
  • biocorrosion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 7319 KiB  
Article
Effect of Copper Doping in Borate Bioactive Glass on Bacterial Colonization Prevention—An Insight Study on Protein/Carbohydrate Leakage for Biomedical Applications
by Bharath Sankaralingam, Gobi Saravanan Kaliaraj, Isha Rameshbabu, Padmapriya Rajendran and Kamalan Kirubaharan Amirtharaj Mosas
J. Compos. Sci. 2024, 8(7), 245; https://doi.org/10.3390/jcs8070245 - 28 Jun 2024
Viewed by 840
Abstract
Researchers have extensively studied borate bioactive glass (BBG) for bone regeneration and wound healing applications. In the current study, 13-93B3 (54.6% B2O3, 22.1% CaO, 7.9% K2O, 7.7% MgO, 6.0% Na2O, and 1.7% P2O [...] Read more.
Researchers have extensively studied borate bioactive glass (BBG) for bone regeneration and wound healing applications. In the current study, 13-93B3 (54.6% B2O3, 22.1% CaO, 7.9% K2O, 7.7% MgO, 6.0% Na2O, and 1.7% P2O5) was synthesized using a sol–gel technique and doped with different molar concentrations of Cu (0.01, 0.05, and 0.25 M) into BBG for possible biomedical applications. Then, the antibacterial activity was tested against E. coli and S. aureus. The maximum zone of inhibition against S. aureus was achieved at 100 μg/mL of 0.25 M Cu-doped BBG. At 50 μg/mL of 0.25 molar copper concentration, E. coli showed a significant reduction in colony-forming units. Hydroxyl radical production, influenced by the BBG powder, was most effective against S. aureus, followed by E. coli. Protein leakage studies demonstrated significant leakage after treatment with BBG powder, demonstrating a strong effect on bacterial strains. This shows a change in protein synthesis, which is essential for central metabolism and gene transcription, affecting proteins in the periplasm and inner and outer membranes. Furthermore, carbohydrate leakage studies showed that BBG is effective against all three categories of cellular carbohydrate, namely membrane-bound, transmembrane, and intracellular carbs. This study focuses on the diverse antibacterial processes of Cu-doped BBG, which has emerged as a promising contender for biological applications that require strong antibacterial characteristics. Full article
Show Figures

Figure 1

13 pages, 6894 KiB  
Article
Fabrication and Characterization of Granulated β-Tricalcium Phosphate and Bioactive Glass Powders by Spray Drying
by Akihiro Nakanishi, Henni Setia Ningsih, Dwi Fortuna Anjusa Putra, Toshihiro Moriga and Shao-Ju Shih
J. Compos. Sci. 2024, 8(3), 111; https://doi.org/10.3390/jcs8030111 - 20 Mar 2024
Cited by 1 | Viewed by 1807
Abstract
Biocomposite materials are widely implemented in various applications in clinical dentistry and orthopedics since it is possible to combine multiple materials by relying on their compatibility. Ceramic-based materials have osteogenic and osteoconductive features owing to their inorganic constituents with dental and bone tissue. [...] Read more.
Biocomposite materials are widely implemented in various applications in clinical dentistry and orthopedics since it is possible to combine multiple materials by relying on their compatibility. Ceramic-based materials have osteogenic and osteoconductive features owing to their inorganic constituents with dental and bone tissue. β-tricalcium phosphate (β-TCP) and bioactive glass have excellent biocompatibility, bioresorbability, and bioactivity. In this study, β-TCP and BG powders were fabricated by spray pyrolysis (SP) and spray drying (SD). These fabrication methods are suitable for the mass production and synthesis of spherical particles. At first, β-TCP and BG spherical particles were synthesized by SP and characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electronic microscopy (SEM). After that, these powders were granulated with the different weight ratios of β-TCP/BG = 100/0, 75/25, 50/50, 25/75, and 0/100 by SD. The resulting granulation powders were characterized using XRD, FT-IR, and SEM to investigate phase compositions and microstructures. In addition, cytotoxicity was investigated using the MTT assay. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 6187 KiB  
Review
Biodegradable Alternatives to Plastic in Medical Equipment: Current State, Challenges, and the Future
by Elham Moshkbid, Duncan E. Cree, Lori Bradford and Wenjun Zhang
J. Compos. Sci. 2024, 8(9), 342; https://doi.org/10.3390/jcs8090342 - 1 Sep 2024
Cited by 1 | Viewed by 4490
Abstract
The use of plastic products or components in medical equipment and supplies results in challenges in terms of environmental sustainability and waste management for disposable, non-recyclable, and non-biodegradable materials. Medical plastic waste includes items ranging from syringes, tubing, intravenous (IV) bags, packaging, and [...] Read more.
The use of plastic products or components in medical equipment and supplies results in challenges in terms of environmental sustainability and waste management for disposable, non-recyclable, and non-biodegradable materials. Medical plastic waste includes items ranging from syringes, tubing, intravenous (IV) bags, packaging, and more. Developing biodegradable replacements to petroleum-based plastics in medical equipment has not yet become an urgent priority, but it is an important endeavor. Examining alternatives involves several key themes, including material selection, testing, validation, and regulatory approval. To date, research includes studies on biodegradable polymers, composite materials, surface modifications, bacterial cellulose, three-dimensional (3D) printing with biodegradable materials, clinical trials and testing, collaboration with industry, regulatory considerations, sustainable packaging for medical devices, and life cycle analysis. The incorporation of bio-based and biodegradable plastics in the healthcare industry holds immense potential for reducing the environmental impact of medical plastic waste. The literature suggests that researchers and industry professionals are actively working towards finding sustainable alternatives that meet the stringent requirements of the medical industry. This paper reviews the efforts made so far to develop biodegradable and sustainable alternatives to plastic in medical equipment using a meta-analysis of resources, which include relevant papers published in English until June 2024. A total of 116 documents were found and screened by three reviewers for relevance. The literature reviewed indicated that various medical uses require plastics due to their unique properties, such as having strength and flexibility; being lightweight; and being able to prevent bacterial contamination. Among the alternatives, polycaprolactone (PCL), polylactic-co-glycolic acid (PLGA), starch-based acid, and polybutyric acid (PBS) have demonstrated favourable outcomes in terms of biocompatibility, safety, and efficacy. Additionally, a set of approaches to overcome these barriers and strategies is discussed alongside potential future solutions. This review aims to catalyze discussions and actions toward a more environmentally sustainable future in the medical industry by providing a comprehensive analysis of the current state, challenges, and prospects of this domain. Full article
Show Figures

Figure 1

107 pages, 6586 KiB  
Review
Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications
by Sergey V. Dorozhkin
J. Compos. Sci. 2024, 8(6), 218; https://doi.org/10.3390/jcs8060218 - 8 Jun 2024
Cited by 1 | Viewed by 2144
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties [...] Read more.
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future. Full article
Show Figures

Figure 1

Back to TopTop