Nanoparticles and Nanocompounds for Cancer Therapy

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials for Cancer Therapies".

Deadline for manuscript submissions: closed (20 January 2024) | Viewed by 13974

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Pharmaceutical Sciences, University of Campinas (FCF/UNICAMP), Campinas 13083871, SP, Brazil
Interests: nanobiotechnology; drug delivery systems (DDS); protein drugs; therapeutic biomolecules; (bio)molecules encapsulation; biomaterials; polymeric micelles; polymeric vesicles (polymersomes); pluronic block copolymers; smart DDS
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Brazil
Interests: nanostructures; nanomechanics; drug delivery; cancer

E-Mail Website
Guest Editor
Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
Interests: nanoparticles; delivery; vaccine adjuvants; target; formulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Numerous nanostructures have been evaluated in cancer studies to overcome the limitations of traditional chemotherapy approaches. As a result, a variety of nanocarriers, including liposomes, polymeric micelles, polymersomes, niosomes, cubosomes, and hydro/nanogels (decorated, conjugated, grafted, or not) have emerged as smart and responsive tools to enhance the arsenal of weapons based on nanostructured biomaterials for combating cancer cells. The purpose of this Special Issue is to showcase and describe state-of-the-art biomaterial approaches for treating cancer, including the encapsulation, release, and cytotoxicity of drugs (both synthetic and non-synthetic); bioactives (derived from plant or microbial sources); and biopharmaceuticals (such as proteins, enzymes, and peptides). Additionally, we will address new results employing smart and dual drug delivery systems, as well as the design of thermo- and pH-responsive polymers/copolymers in nanostructures. We welcome both review and research manuscripts.

Dr. André M. Lopes
Dr. Luciana Magalhães Rebelo Alencar
Dr. Lianyan Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanopharmaceuticals
  • drugs and biopharmaceuticals
  • thermo- and pH-responsive polymers
  • smart biomaterials
  • graft copolymers
  • nanostructures decoration
  • smart drug delivery systems
  • dual drug delivery systems
  • encapsulation of bioactive
  • biomolecules

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 6173 KiB  
Article
Process Optimization of Scaled-Up Production and Biosafety Evaluation of the Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nano-Vaccine
by Hengye Yang, Yuan Gao, Meijuan Liu, Juan Ma and Qun Lu
J. Funct. Biomater. 2024, 15(5), 127; https://doi.org/10.3390/jfb15050127 - 14 May 2024
Viewed by 1194
Abstract
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic [...] Read more.
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic acid) (PLA) and cationic lipid didodecyl-dimethyl-ammonium bromide (DDAB), develop the scale-up process, and evaluate the stability and biosafety of it. The optimum preparation conditions of DDAB/PLA NPs on a small scale were as follows: DDAB amount of 30 mg, aqueous phase volume of 90 mL, stirring rate at 550 rpm, and solidifying time of 12 h. Under the optimum conditions, the size of the NPs was about 170 nm. In scale-up preparation experiments, the vacuum rotary evaporation of 6 h and the Tangential flow ultrafiltration (TFU) method were the optimum conditions. The results suggested that DDAB/PLA NPs exhibited a uniform particle size distribution, with an average size of 150.3 ± 10.4 nm and a narrow polydispersity index (PDI) of 0.090 ± 0.13, coupled with a high antigen loading capacity of 85.4 ± 4.0%. In addition, the DDAB/PLA NPs can be stored stably for 30 days and do not have side effects caused by residual solvents. For biosafety, the acute toxicity experiments showed good tolerance of the vaccine formulation even at a high adjuvant dose. The local irritation experiment demonstrated the reversibility of muscular irritation, and the repeated toxicity experiment revealed no significant necrosis or severe lesions in mice injected with the high-dose vaccine formulation. Overall, the DDAB/PLA NPs exhibit potential for clinical translation as a safe candidate vaccine adjuvant. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

27 pages, 4488 KiB  
Article
A Comprehensive Study on Folate-Targeted Mesoporous Silica Nanoparticles Loaded with 5-Fluorouracil for the Enhanced Treatment of Gynecological Cancers
by Aliyah Almomen and Adel Alhowyan
J. Funct. Biomater. 2024, 15(3), 74; https://doi.org/10.3390/jfb15030074 - 20 Mar 2024
Cited by 1 | Viewed by 2189
Abstract
Background: Gynecological cancers are a significant public health concern, accounting for 40% of all cancer incidence and 30% of deaths in women. 5-Fluorouracil (5-FU) can be used with chemotherapy to improve treatment in advanced-stage gynecological cancer. Mesoporous silica nanoparticles (MSNs) can improve drug [...] Read more.
Background: Gynecological cancers are a significant public health concern, accounting for 40% of all cancer incidence and 30% of deaths in women. 5-Fluorouracil (5-FU) can be used with chemotherapy to improve treatment in advanced-stage gynecological cancer. Mesoporous silica nanoparticles (MSNs) can improve drug effectiveness and reduce toxicity. Folic acid can target folate receptors in epithelial malignancies like ovarian and cervical cancer. Methods: The mixture of MSN-NH2 was synthesized by dissolving N-lauroylsarcosine sodium in a water–ethanol mixture, adding APTES and TEOS, and heating at 80 °C for 18 h, before being fully characterized. The drug is loaded into a 5-FU solution and functionalized with folate. The drug release mechanism, as well as ex vivo intestinal permeation from MSN-NH2 formulations, was tested. The cell viability study of the nanoparticles was evaluated in various cancer cell lines, and the cellular uptake was measured indirectly using HPLC. Results: The study analyzed the amine content, propylamine loading, and drug loading capacity of MSN-NH2 nanoparticles. It found that the loading of propylamine was around 0.733 mmol/g, and the surface density was 0.81 molecules/nm. The study also showed that the surface decoration of MSN-NH2 with folic acid was successfully achieved. The release rate of 5-FU from MSN-NH2 was slow and controlled, with a slower rate at pH 5.5. The study found that the amin surface functionalization of MSN-NH2 nanoparticles can reduce potential toxicity in ovarian and cervical cancer cells. Conclusions: Based on the results, the encapsulation of 5-FU and functionalization of MSN-NH2 with folic acid can serve as potential carriers for 5-FU in treating gynecological cancer. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

14 pages, 2120 KiB  
Article
Surface Modification Strategies for Chrysin-Loaded Iron Oxide Nanoparticles to Boost Their Anti-Tumor Efficacy in Human Colon Carcinoma Cells
by Aynura Karimova, Sabina Hajizada, Habiba Shirinova, Sevinj Nuriyeva, Lala Gahramanli, Mohammed M. Yusuf, Stefano Bellucci, Christoph Reissfelder and Vugar Yagublu
J. Funct. Biomater. 2024, 15(2), 43; https://doi.org/10.3390/jfb15020043 - 13 Feb 2024
Cited by 3 | Viewed by 3170
Abstract
Enhancing nanoparticles’ anti-cancer capabilities as drug carriers requires the careful adjustment of formulation parameters, including loading efficiency, drug/carrier ratio, and synthesis method. Small adjustments to these parameters can significantly influence the drug-loading efficiency of nanoparticles. Our study explored how chitosan and polyethylene glycol [...] Read more.
Enhancing nanoparticles’ anti-cancer capabilities as drug carriers requires the careful adjustment of formulation parameters, including loading efficiency, drug/carrier ratio, and synthesis method. Small adjustments to these parameters can significantly influence the drug-loading efficiency of nanoparticles. Our study explored how chitosan and polyethylene glycol (PEG) coatings affect the structural properties, drug-loading efficiency, and anti-cancer efficacy of Fe3O4 nanoparticles (NPs). The loading efficiency of the NPs was determined using FTIR spectrometry and XRD. The quantity of chrysin incorporated into the coated NPs was examined using UV–Vis spectrometry. The effect of the NPs on cell viability and apoptosis was determined by employing the HCT 116 human colon carcinoma cell line. We showed that a two-fold increase in drug concentration did not impact the loading efficiency of Fe3O4 NPs coated with PEG. However, there was a 33 Å difference in the crystallite sizes obtained from chitosan-coated Fe3O4 NPs and drug concentrations of 1:0.5 and 1:2, resulting in decreased system stability. In conclusion, PEG coating exhibited a higher loading efficiency of Fe3O4 NPs compared to chitosan, resulting in enhanced anti-tumor effects. Furthermore, variations in the loaded amount of chrysin did not impact the crystallinity of PEG-coated NPs, emphasizing the stability and regularity of the system. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

19 pages, 2624 KiB  
Article
Radiolabeled Human Serum Albumin Nanoparticles Co-Loaded with Methotrexate and Decorated with Trastuzumab for Breast Cancer Diagnosis
by Meliha Ekinci, Luciana Magalhães Rebelo Alencar, André Moreni Lopes, Ralph Santos-Oliveira and Derya İlem-Özdemir
J. Funct. Biomater. 2023, 14(9), 477; https://doi.org/10.3390/jfb14090477 - 18 Sep 2023
Cited by 6 | Viewed by 2157
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, with millions of new cases diagnosed yearly. Addressing the burden of breast cancer mortality requires a comprehensive approach involving early detection, accurate diagnosis, effective treatment, and equitable access to healthcare services. [...] Read more.
Breast cancer is a leading cause of cancer-related mortality among women worldwide, with millions of new cases diagnosed yearly. Addressing the burden of breast cancer mortality requires a comprehensive approach involving early detection, accurate diagnosis, effective treatment, and equitable access to healthcare services. In this direction, nano-radiopharmaceuticals have shown potential for enhancing breast cancer diagnosis by combining the benefits of nanoparticles and radiopharmaceutical agents. These nanoscale formulations can provide improved imaging capabilities, increased targeting specificity, and enhanced sensitivity for detecting breast cancer lesions. In this study, we developed and evaluated a novel nano-radio radiopharmaceutical, technetium-99m ([99mTc]Tc)-labeled trastuzumab (TRZ)-decorated methotrexate (MTX)-loaded human serum albumin (HSA) nanoparticles ([99mTc]-TRZ-MTX-HSA), for the diagnosis of breast cancer. In this context, HSA and MTX-HSA nanoparticles were prepared. Conjugation of MTX-HSA nanoparticles with TRZ was performed using adsorption and covalent bonding methods. The prepared formulations were evaluated for particle size, PDI value, zeta (ζ) potential, scanning electron microscopy analysis, encapsulation efficiency, and loading capacity and cytotoxicity on MCF-7, 4T1, and MCF-10A cells. Finally, the nanoparticles were radiolabeled with [99mTc]Tc using the direct radiolabeling method, and cellular uptake was performed with the nano-radiopharmaceutical. The results showed the formation of spherical nanoparticles, with a particle size of 224.1 ± 2.46 nm, a PDI value of 0.09 ± 0.07, and a ζ potential value of −16.4 ± 0.53 mV. The encapsulation efficiency of MTX was found to be 32.46 ± 1.12%, and the amount of TRZ was 80.26 ± 1.96%. The labeling with [99mTc]Tc showed a high labeling efficiency (>99%). The cytotoxicity studies showed no effect, and the cellular uptake studies showed 97.54 ± 2.16% uptake in MCF-7 cells at the 120th min and were found to have a 3-fold higher uptake in cancer cells than in healthy cells. In conclusion, [99mTc]Tc-TRZ-MTX-HSA nanoparticles are promising for diagnosing breast cancer and evaluating the response to treatment in breast cancer patients. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Graphical abstract

14 pages, 5092 KiB  
Article
Macrophage Cell Membrane Coating on Piperine-Loaded MIL-100(Fe) Nanoparticles for Breast Cancer Treatment
by Christian Rafael Quijia, Geovana Navegante, Rafael Miguel Sábio, Valeria Valente, Alberto Ocaña, Carlos Alonso-Moreno, Regina Célia Galvão Frem and Marlus Chorilli
J. Funct. Biomater. 2023, 14(6), 319; https://doi.org/10.3390/jfb14060319 - 11 Jun 2023
Cited by 7 | Viewed by 2474
Abstract
Piperine (PIP), a compound found in Piper longum, has shown promise as a potential chemotherapeutic agent for breast cancer. However, its inherent toxicity has limited its application. To overcome this challenge, researchers have developed PIP@MIL-100(Fe), an organic metal–organic framework (MOF) that encapsulates [...] Read more.
Piperine (PIP), a compound found in Piper longum, has shown promise as a potential chemotherapeutic agent for breast cancer. However, its inherent toxicity has limited its application. To overcome this challenge, researchers have developed PIP@MIL-100(Fe), an organic metal–organic framework (MOF) that encapsulates PIP for breast cancer treatment. Nanotechnology offers further treatment options, including the modification of nanostructures with macrophage membranes (MM) to enhance the evasion of the immune system. In this study, the researchers aimed to evaluate the potential of MM-coated MOFs encapsulated with PIP for breast cancer treatment. They successfully synthesized MM@PIP@MIL-100(Fe) through impregnation synthesis. The presence of MM coating on the MOF surface was confirmed through SDS-PAGE analysis, which revealed distinct protein bands. Transmission electron microscopy (TEM) images demonstrated the existence of a PIP@MIL-100(Fe) core with a diameter of around 50 nm, surrounded by an outer lipid bilayer layer measuring approximately 10 nm in thickness. Furthermore, the researchers evaluated the cytotoxicity indices of the nanoparticles against various breast cancer cell lines, including MCF-7, BT-549, SKBR-3, and MDA. The results demonstrated that the MOFs exhibited between 4 and 17 times higher cytotoxicity (IC50) in all four cell lines compared to free PIP (IC50 = 193.67 ± 0.30 µM). These findings suggest that MM@PIP@MIL-100(Fe) holds potential as an effective treatment for breast cancer. The study’s outcomes highlight the potential of utilizing MM-coated MOFs encapsulated with PIP as an innovative approach for breast cancer therapy, offering improved cytotoxicity compared to free PIP alone. Further research and development are warranted to explore the clinical translation and optimize the efficacy and safety of this treatment strategy. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 631 KiB  
Review
Recent Advances in Curcumin-Based Combination Nanomedicines for Cancer Therapy
by Amir R. Afshari, Mehdi Sanati, Prashant Kesharwani and Amirhossein Sahebkar
J. Funct. Biomater. 2023, 14(8), 408; https://doi.org/10.3390/jfb14080408 - 2 Aug 2023
Cited by 5 | Viewed by 2208
Abstract
Standard cancer chemotherapeutics often produce significant adverse effects and eventually lose their effectiveness due to the emergence of resistance mechanisms. As a result, patients with malignant tumors experience a poor quality of life and a short lifespan. Thus, combination medication regimens provide various [...] Read more.
Standard cancer chemotherapeutics often produce significant adverse effects and eventually lose their effectiveness due to the emergence of resistance mechanisms. As a result, patients with malignant tumors experience a poor quality of life and a short lifespan. Thus, combination medication regimens provide various advantages, including increased success rate, fewer side effects, and fewer occurrences of resistance. Curcumin (Cur), a potential phytochemical from turmeric, when coupled with traditional chemotherapeutics, has been established to improve the effectiveness of cancer treatment in clinical and preclinical investigations. Cur not only exerts multiple mechanisms resulting in apoptotic cancer cell death but also reduces the resistance to standard chemotherapy drugs, mainly through downregulating the multi-drug resistance (MDR) cargoes. Recent reports showed the beneficial outcomes of Cur combination with many chemotherapeutics in various malignancies. Nevertheless, owing to the limited bioavailability, devising co-delivery strategies for Cur and conventional pharmaceuticals appears to be required for clinical settings. This review summarized various Cur combinations with standard treatments as cancer therapeutics. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop