Development and Utilization of Offshore Renewable Energy

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Marine Energy".

Deadline for manuscript submissions: 10 May 2025 | Viewed by 3950

Special Issue Editors


E-Mail Website
Guest Editor
Department of Construction and Manufacturing Engineering, University of Oviedo, Mieres, Spain
Interests: renewable energy; ocean engineering; marine structures; marine renewable energy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Hydraulic Engineering, CIGEO Research Group, Campus Terra, University of Santiago de Compostela, Compostela, Spain
Interests: marine renewable energy; estuarine and coastal hydrodynamics; sediment transport; integrated water resources management of marine and freshwater systems; aquaculture
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Engineering Design and Naval Engines, Centro Universitario de la Defensa en la Escuela Naval Militar, Marín, Spain
Interests: offshore renewable energy; offshore wind; wave energy: ocean engineering; unmanned vehicles; digital twins
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Hydraulic Engineering, University of Santiago de Compostela, EPSE, Campus Universitario s/n, 27002 Lugo, Spain
Interests: marine renewable energy; ocean engineering, coastal modeling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil Engineering, Faculty of Engineering of the University of Porto (FEUP) and Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto, Portugal
Interests: marine renewable energy; coastal modeling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the increasing demand for renewable energy, the exploration of ocean resources has gained attention. Offshore renewable energy has been marked by significant milestones, from early experiments with wave and tidal energy to the emergence of offshore wind farms and innovative solutions like floating photovoltaics. This Special Issue aims to delve into the latest advancements and challenges in harnessing ocean energy. We seek to address key issues in resource assessment, cutting-edge technology innovation, and sustainable deployment practices. We invite submissions of original research articles, comprehensive reviews, and insightful case studies that explore various aspects of offshore renewable energy, including ocean energy resource characterization, novel technology development, environmental impact assessments, and policy implications. Contributions drawing from interdisciplinary perspectives are encouraged.

Dr. Mario López Gallego
Dr. Rodrigo Carballo Sánchez
Dr. Carlos Pérez-Collazo
Dr. Iván López Moreira
Dr. Victor Ramos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • renewable energy
  • ocean energy
  • marine technology
  • wave energy
  • tidal energy
  • offshore wind
  • floating photovoltaics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6220 KiB  
Article
Comparison of Coupled and Uncoupled Modeling of Floating Wind Farms with Shared Anchors
by Katherine Coughlan, Ericka Lozon, Matthew Hall, Bruce Martin and Sanjay Arwade
J. Mar. Sci. Eng. 2025, 13(1), 106; https://doi.org/10.3390/jmse13010106 - 8 Jan 2025
Viewed by 690
Abstract
As design options for floating wind farms continue to be explored, shared (or multiline) anchors that secure mooring lines from multiple turbines remain a promising technology that can potentially reduce the number of anchors and overall mooring costs. This study evaluates two methods [...] Read more.
As design options for floating wind farms continue to be explored, shared (or multiline) anchors that secure mooring lines from multiple turbines remain a promising technology that can potentially reduce the number of anchors and overall mooring costs. This study evaluates two methods for analyzing the loads on shared anchors: one in which floating offshore wind turbines are simulated individually (using the software OpenFAST), and one in which an entire floating wind farm is simulated collectively (using the software FAST.Farm). A three-line shared anchor is evaluated for multiple loading scenarios in deep water, using the International Energy Agency 15 MW turbine on the VolturnUS-S semisubmersible platform. While the two methods produce broadly comparable results, the coupled wave loading on platforms within the farm results in wave force cancellations and amplifications that decrease multiline force directional ranges and increase multiline force extreme values (up to 7%) and standard deviations (up to 11%) for wave-driven load cases. The inclusion of wakes in FAST.Farm also reduces the net load on the shared anchor due to the velocity deficit, leading to larger differences between OpenFAST and FAST.Farm (up to 3% difference in mean loads) for load cases with operational turbines. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

23 pages, 5219 KiB  
Article
Multivariate Data Analysis of Maximum Stress Concentration Factors in FRP-Retrofitted Two-Planar KT-Joints under Axial Loads for Offshore Renewables
by Esmaeil Zavvar, Fernanda Sousa, Francisco Taveira-Pinto and Paulo Rosa Santos
J. Mar. Sci. Eng. 2024, 12(8), 1451; https://doi.org/10.3390/jmse12081451 - 22 Aug 2024
Cited by 7 | Viewed by 1151
Abstract
With growing concerns about the danger of global climate change and worldwide demand for energy, the interest in the investigation and construction of renewable energy technologies has increased. Fixed platforms are a type of support structure for wind turbines composed of different types [...] Read more.
With growing concerns about the danger of global climate change and worldwide demand for energy, the interest in the investigation and construction of renewable energy technologies has increased. Fixed platforms are a type of support structure for wind turbines composed of different types of tubular joints. These structures are under different kinds of cyclic loadings in ocean environmental conditions, which must be designed and reinforced against fatigue. In the present paper, the relationships between the parameters in DKT-joints reinforced with FRP under axial loads are investigated using several models, under 16 axial loading cases, with different nondimensional parameters and different FRP materials, and orientations were generated in ANSYS (total 5184) and analyzed. The four loading conditions that cause the maximum stress concentration factors were selected. After analyzing the 1296 reinforced models, relevant data were extracted, and possible samples were created. The extracted data were used in a multivariate data analysis of maximum stress concentration factors. The Pearson correlation coefficient is utilized to study the relationship between parameters and subsequently to make predictions. To reduce the number of variables and to group the data points into clusters based on certain similarities, hierarchical and non-hierarchical classifications are used, respectively. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

15 pages, 7045 KiB  
Article
Hydrodynamic Interactions and Enhanced Energy Harnessing amongst Many WEC Units in Large-Size Wave Parks
by Xinyuan Shao, Jonas W. Ringsberg, Hua-Dong Yao, Uday Rajdeep Sakleshpur Lokesh Gowda, Hrishikesh Nitin Khedkar and Jørgen Hals Todalshaug
J. Mar. Sci. Eng. 2024, 12(5), 730; https://doi.org/10.3390/jmse12050730 - 27 Apr 2024
Cited by 1 | Viewed by 1323
Abstract
Interactions between wave energy converters (WECs) can significantly affect the overall energy-harnessing performance of a wave park. Although large-size wave parks with many WEC units are commonly considered in practical applications, it is challenging to simulate such parks due to huge computational costs. [...] Read more.
Interactions between wave energy converters (WECs) can significantly affect the overall energy-harnessing performance of a wave park. Although large-size wave parks with many WEC units are commonly considered in practical applications, it is challenging to simulate such parks due to huge computational costs. This paper presents a numerical model that uses the boundary element method (BEM) to simulate wave parks. Each wave energy converter (WEC) was modelled as a comprehensive system, including WEC buoys, power take-off, and mooring systems, with hydrodynamic interactions included. Two classical layouts for arranging 16 units were simulated using this numerical model. The energy-harnessing performance of these array layouts was analyzed for both regular waves and a selection of irregular sea state conditions with different wave directions, wave heights, wave periods and water depths. For each layout, three WEC separation distances were studied. An increase of up to 16% in the power performance of the WEC under regular waves was observed, which highlights the importance of interaction effects. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

Back to TopTop