Microwave Passive Components, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "E:Engineering and Technology".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 10304

Special Issue Editors


E-Mail Website
Guest Editor
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Interests: vacuum electronic devices; millimeter-wave/THz passive devices; dielectric microwave measurement
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Interests: vacuum electronic devices; passive pulse compressor; microwave biosensor; dielectric microwave measurement
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Interests: high power microwave devices; microwave mode converters; millimeter wave sources

E-Mail Website
Guest Editor
Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
Interests: vacuum electronic devices; microwave passive components; terahertz transmission line; terahertz micromachining

Special Issue Information

Dear Colleagues,

Today, micro-, millimeter and terahertz wave devices and systems have been widely used in various aspects of life, such as the 5G/6G communication, vehicle imaging radar, medical, bio-science, security, etc. As is well-known, microwave passive components play an important role in the design and application of these devices and systems. Especially with the development of advanced machining technologies, such as the micro-electro-mechanical system (MEMS), 3D printing, and micro-/nano-machining, the machining accuracy and ability of the passive components have been improved greatly. In addition, in the past two decades, novel concepts and mechanisms have been continually introduced or proposed from other fields, including the meta-material, vortex electromagnetic wave, and spoof surface plasmon. This has made the microwave passive devices/components enter a new stage controlled by information coding. That means the performance of microwave passive devices still has great potential in the future, which may contribute to the miniaturization and integration of RF circuits and devices. Prof. Guo Liu has organized a Special Issue entitled “Microwave Passive Components”, which received a strong response within the field. Therefore, this Special Issue, entitled “Microwave Passive Components, 2nd Edition”, was created, devoted to continue exploring for research papers, short communications, and review articles focusing on the theory, modeling, simulation, measurement and applications of passive components, circuits, devices and systems in the microwave, millimeter-wave and terahertz-wave bands.

We look forward to receiving your contributions to this Special Issue.

Dr. Guoxiang Shu
Prof. Dr. Guo Liu
Dr. Dian Zhang
Dr. Luqi Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • theory, modeling, fabrication, measurement and applications
  • microwave, millimeter and terahertz wave passive component/devices applied in the communication, radar and some other systems
  • passive component/devices in antenna, filters, biosensors, vacuum electronic devices, pulse compressor, particle accelerator, etc.
  • other work related to microwave devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2855 KiB  
Article
A Wide-Angle and PON Fully Polarimetric Retrodirective Array at the X Band
by Shuangdi Zhao, Lei Chen, Jicheng Pan and Tianling Zhang
Micromachines 2024, 15(12), 1418; https://doi.org/10.3390/mi15121418 (registering DOI) - 26 Nov 2024
Abstract
A new type of fully polarimetric retrodirective array (RDA) using a PON-type structure is proposed in this paper. The fully polarimetric property is the result of the proposed phase conjugation circuits, which perform phase conjugation processing on the x, y, and z polarization [...] Read more.
A new type of fully polarimetric retrodirective array (RDA) using a PON-type structure is proposed in this paper. The fully polarimetric property is the result of the proposed phase conjugation circuits, which perform phase conjugation processing on the x, y, and z polarization electric field components of the incident wave when combined with a tri-polarized antenna array. It enables the retrodirective array to receive and retransmit an arbitrary polarized incident wave. The measured results of the monostatic radar cross-section (RCS) show that the −5 dB beam width of the array was greater than 95° at 9.6 GHz for different polarized incident waves. Furthermore, the proposed RDA has better retrodirectivity performance on arbitrary polarized incident waves when using a wide-beam antenna, and if we further incorporate modulation and demodulation into the circuits, it has the potential to be applied to the wireless communications field. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

11 pages, 8301 KiB  
Article
A 2-D Fully Polarized Van Atta Array Based on Wide-Beam Tri-Polarized Antennas
by Jicheng Pan, Lei Chen, Shuangdi Zhao and Tianling Zhang
Micromachines 2024, 15(11), 1400; https://doi.org/10.3390/mi15111400 - 20 Nov 2024
Viewed by 304
Abstract
This paper proposes a 2-D fully polarized Van Atta array, which consists of four tri-polarized antenna elements. The tri-polarized antenna element comprises a monopole antenna and a low-profile microstrip antenna that widens the beam by folding four electric walls. This configuration enables the [...] Read more.
This paper proposes a 2-D fully polarized Van Atta array, which consists of four tri-polarized antenna elements. The tri-polarized antenna element comprises a monopole antenna and a low-profile microstrip antenna that widens the beam by folding four electric walls. This configuration enables the Van Atta arrays to receive and transmit arbitrarily polarized incident waves over a wider range. The measurement results indicate that the proposed Van Atta array exhibits a −5 dB radar cross-section (RCS) greater than 95° when TE-polarized waves are incident and greater than 134° when TM-polarized waves are incident, significantly surpassing the 2-D dual-polarized array. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

17 pages, 4060 KiB  
Article
Energy Efficient Multi-Active/Multi-Passive Antenna Arrays for Portable Access Points
by Muhammad Haroon Tariq, Shuai Zhang, Christos Masouros and Constantinos B. Papadias
Micromachines 2024, 15(11), 1351; https://doi.org/10.3390/mi15111351 - 1 Nov 2024
Viewed by 873
Abstract
This article is about better wireless network connectivity. The main goal is to provide wireless service to several use cases and scenarios that may not be adequately covered today. Some of the considered scenarios are home connectivity, street-based infrastructure, emergency situations, disaster areas, [...] Read more.
This article is about better wireless network connectivity. The main goal is to provide wireless service to several use cases and scenarios that may not be adequately covered today. Some of the considered scenarios are home connectivity, street-based infrastructure, emergency situations, disaster areas, special event areas, and remote areas that suffer from problematic/inadequate network and possibly power infrastructure. A target system that we consider for such scenarios is that of an energy-efficient self-backhauled base station (also called a “portable access point—PAP”) that is mounted on a drone to aid/expand the land-based network. For the wireless backhaul link of the PAP, as well as for the fronthaul of the street-mounted base station, we consider newly built multi-active/multi-passive parasitic antenna arrays (MAMPs). These antenna systems lead to increased range/signal strength with low hardware complexity and power needs. This is due to their reduced number of radio frequency chains, which decreases the cost and weight of the base station system. MAMPs can show a performance close to traditional multiple input/multiple output (MIMO) systems that use as many antenna elements as RF chains and to phased arrays. They can produce a directional beam in any desired direction with higher gain and narrow beamwidth by just tuning the load values of the parasitic elements. The MAMP is designed based on radiation conditions which were produced during the research to ensure that the radiation properties of the array were good. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

18 pages, 9682 KiB  
Article
Multifunctional Metasurface with PIN Diode Application Featuring Absorption, Polarization Conversion, and Transmission Functions
by Francisco D. M. Nobre, Thayana M. L. de Sousa, Antônio L. P. S. Campos and Maurício W. B. da Silva
Micromachines 2024, 15(11), 1344; https://doi.org/10.3390/mi15111344 - 31 Oct 2024
Viewed by 815
Abstract
The objective of this paper is to explore the potential of integrating three distinct functionalities into a thin, single-layer metasurface. Specifically, the study introduces a metasurface design that combines absorption, polarization conversion, and transmission capabilities. The proposed structure consists of a double square [...] Read more.
The objective of this paper is to explore the potential of integrating three distinct functionalities into a thin, single-layer metasurface. Specifically, the study introduces a metasurface design that combines absorption, polarization conversion, and transmission capabilities. The proposed structure consists of a double square loop disposed on a dielectric substrate, which is covered by a superstrate. In this study, the traditional ground plane was replaced with a periodic array, selectively reflecting frequencies of interest. Then, the absorption and polarization conversion characteristics were achieved by introducing the resonators in the front layer. By introducing asymmetry to the resonators and integrating PIN diodes for control, we demonstrated that the metasurface could efficiently absorb electromagnetic waves (with PIN diodes in the ON state), convert polarization (with PIN diodes in the OFF state), and enable signal transmission in a different frequency range. The numerical results indicated excellent performance in both absorption and polarization conversion. At a frequency of 3.05 GHz, the absorption rate reached 97%, while a polarization conversion rate of 98% was achieved at the resonance frequency of 4.37 GHz. Moreover, the proposed structure exhibited a thickness of λ/30.7 at the absorption peak. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

11 pages, 2762 KiB  
Article
Two CMOS Wilkinson Power Dividers Using High Slow-Wave and Low-Loss Transmission Lines
by Chatrpol Pakasiri, Wei-Sen Teng and Sen Wang
Micromachines 2024, 15(8), 1009; https://doi.org/10.3390/mi15081009 - 5 Aug 2024
Viewed by 843
Abstract
This work presents two Wilkinson power dividers (WPDs) using multi-layer pseudo coplanar waveguide (PCPW) structures. The PCPW-based WPDs were designed, implemented, and verified in a standard 180 nm CMOS process. The proposed PCPW features high slow-wave and low-loss performances compared to other common [...] Read more.
This work presents two Wilkinson power dividers (WPDs) using multi-layer pseudo coplanar waveguide (PCPW) structures. The PCPW-based WPDs were designed, implemented, and verified in a standard 180 nm CMOS process. The proposed PCPW features high slow-wave and low-loss performances compared to other common transmission lines. The two WPDs are based on the same PCPW structure parameters in terms of line width, spacing, and used metal layers. One WPD was realized in a straight PCPW-based layout, and the other WPD was realized in a meandered PCPW-based layout. Both the two WPDs worked up to V-band frequencies, as expected, which also demonstrates that the PCPW guiding structure is less susceptible to the effects of meanderings on the propagation constant and characteristic impedance. The meandered design shows that the measured insertion losses were about 5.1 dB, and its return losses were better than 17.5 dB at 60 GHz. In addition, its isolation, amplitude imbalance, and phase imbalance were 18.5 dB, 0.03 dB, and 0.4°, respectively. The core area was merely 0.2 mm × 0.23 mm, or 1.8 × 10−3λo2. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

18 pages, 6136 KiB  
Article
An Electronically Reconfigurable Highly Selective Stop-Band Ultra-Wideband Antenna Applying Electromagnetic Bandgaps and Positive-Intrinsic-Negative Diodes
by Anees Abbas, Niamat Hussain, Md. Abu Sufian, Wahaj Abbas Awan, Jaemin Lee and Nam Kim
Micromachines 2024, 15(5), 638; https://doi.org/10.3390/mi15050638 - 9 May 2024
Cited by 1 | Viewed by 995
Abstract
In this article, an ultra-wideband (UWB) antenna featuring two reconfigurable quasi-perfect stop bands at WLAN (5.25–5.75 GHz) and lower 5G (3.4–3.8 GHz) utilizing electromagnetic bandgaps (EBGs) and positive-intrinsic-negative (P-I-N) diodes is proposed. A pair of EBG structures are applied to generate sharp notch [...] Read more.
In this article, an ultra-wideband (UWB) antenna featuring two reconfigurable quasi-perfect stop bands at WLAN (5.25–5.75 GHz) and lower 5G (3.4–3.8 GHz) utilizing electromagnetic bandgaps (EBGs) and positive-intrinsic-negative (P-I-N) diodes is proposed. A pair of EBG structures are applied to generate sharp notch bands in the targeted frequency spectrum. Each EBG creates a traditional notch, while two regular notches are combined to make a quasi-perfect, sharp, notch band. Four P-I-N diodes are engraved into the EBG structures to enable notch band reconfigurability. By switching the operational condition of the four diodes, the UWB antenna can dynamically adjust its notching characteristics to enhance its adaptability to various communication standards and applications. The antenna can be reconfigured as a UWB (3–11.6 GHz) without any notch band, a UWB with a single sharp notch (either at WLAN or 5G), or a UWB with two quasi-perfect notch bands. Moreover, the antenna’s notch bands can also be switched from a traditional notch to a quasi-perfect notch and vice versa. To confirm the validity of the simulated outcomes, the proposed reconfigurable UWB antenna is fabricated and measured. The experimental findings are aligned closely with simulation results, and the antenna offers notch band reconfigurability. The antenna shows a consistently favorable radiation pattern and gain. The dimension of the presented antenna is 20 × 27 × 1.52 mm3 (0.45 λc × 0.33 λc × 0.025 λc, where λc is the wavelength in free space). Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

12 pages, 34515 KiB  
Article
A Compact Broadband Power Combiner for High-Power, Continuous-Wave Applications
by Zihan Yang, Qiang Zhang, Kelin Zhou, Lishan Zhao and Jun Zhang
Micromachines 2024, 15(2), 207; https://doi.org/10.3390/mi15020207 - 30 Jan 2024
Viewed by 1501
Abstract
A compact broadband combiner with a high power capacity and a low insertion loss, which is especially useful for solid-state power sources where multi-way power synthesis is needed, was designed and experimentally investigated. The combiner could combine the microwave signals of sixteen terminals [...] Read more.
A compact broadband combiner with a high power capacity and a low insertion loss, which is especially useful for solid-state power sources where multi-way power synthesis is needed, was designed and experimentally investigated. The combiner could combine the microwave signals of sixteen terminals into a single one and was based on a radial-line waveguide whose circumferential symmetry benefited the amplitude and phase consistency of the combiner. Simulation and experimental results showed that the prototype device, designed for S-band applications, exhibited a reflection coefficient S1,1 < −20 dB in the range of 2.06–2.93 GHz, which corresponds to a relative bandwidth of approximately 34.6%. At 2.45 GHz, the phase imbalance was ±4.5° and the 16-way transmission coefficient was concentrated around −12.0~−12.3 dB. The insertion loss of the device at ambient and elevated temperatures was simulated and experimentally verified, which is of importance for the design of similar high-power microwave combiners. High-power tests proved that even without enforced wind or liquid cooling, the device can handle continuous power (CW) of at least 3.9 kW, which can be much enhanced by taking regular cooling measures. The combined features of the designed combiner suggest promising applications for power synthesis in high-power, solid-state RF sources. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

13 pages, 16250 KiB  
Article
Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications
by Yunfei Sun, Kelin Zhou, Juntao He, Zihan Yang, Chengwei Yuan and Qiang Zhang
Micromachines 2023, 14(11), 2127; https://doi.org/10.3390/mi14112127 - 20 Nov 2023
Viewed by 1492
Abstract
A continuous transverse stub (CTS) array antenna with broad bandwidth and high-power handling capacity is proposed in this paper. The technologies of multi-step impedance matching and T-shaped electromagnetic band-gap (EBG) loading are utilized, which improved the antenna operating frequency bandwidth. An H-plane lens [...] Read more.
A continuous transverse stub (CTS) array antenna with broad bandwidth and high-power handling capacity is proposed in this paper. The technologies of multi-step impedance matching and T-shaped electromagnetic band-gap (EBG) loading are utilized, which improved the antenna operating frequency bandwidth. An H-plane lens horn is used to feed the CTS array. As a result, a good bandwidth capability of more than 32% is achieved, with a gain variation less than 3.0 dB. The measured sidelobe level (SLL) is below −18 dB in the entire frequency range. Moreover, the power handling capacity of the antenna is more than 80 MW and can reach the GW level after arraying, which indicates that this antenna has application potential in the high-power microwave (HPM) field. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

18 pages, 6109 KiB  
Article
Accurate Microwave Circuit Co-Simulation Method Based on Simplified Equivalent Circuit Modeling
by Sanghyun Kim, Won-Sang Yoon, Jongsik Lim and Sang-Min Han
Micromachines 2023, 14(10), 1847; https://doi.org/10.3390/mi14101847 - 27 Sep 2023
Cited by 1 | Viewed by 1431
Abstract
A new co-simulation method is proposed for active devices and electromagnetic resonant circuits at microwave frequency range. For the measured and extracted device parameters, three steps of equivalent circuit models are processed of the general, simplified, and EM RLC models. To overcome the [...] Read more.
A new co-simulation method is proposed for active devices and electromagnetic resonant circuits at microwave frequency range. For the measured and extracted device parameters, three steps of equivalent circuit models are processed of the general, simplified, and EM RLC models. To overcome the limited lumped element simulation in an electromagnetic simulator, the simplified equivalent circuit model is established by mathematical computation. The co-simulation procedures are described and experimentally verified for commercial diodes. The application circuit is designed and implemented using the proposed co-simulation method. The experimental results verify that design using the proposed co-simulated method presented excellent agreement for a wideband frequency range of 0–4 GHz, compared with that using a conventional design method. The proposed co-simulation method can be applied to any commercial EM simulation tools without active model error. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

14 pages, 3358 KiB  
Article
Design of Multiplexers for IoT-Based Applications Using Stub-Loaded Coupled-Line Resonators
by Muhammad Idrees, Sohail Khalid, Muhammad Abdul Rehman, Syed Sajid Ullah, Saddam Hussain and Jawaid Iqbal
Micromachines 2023, 14(10), 1821; https://doi.org/10.3390/mi14101821 - 23 Sep 2023
Cited by 1 | Viewed by 1176
Abstract
This paper presents the design of microstrip-based multiplexers using stub-loaded coupled-line resonators. The proposed multiplexers consist of a diplexer and a triplexer, meticulously engineered to operate at specific frequency bands relevant to IoT systems: 2.55 GHz, 3.94 GHz, and 5.75 GHz. To enhance [...] Read more.
This paper presents the design of microstrip-based multiplexers using stub-loaded coupled-line resonators. The proposed multiplexers consist of a diplexer and a triplexer, meticulously engineered to operate at specific frequency bands relevant to IoT systems: 2.55 GHz, 3.94 GHz, and 5.75 GHz. To enhance isolation and selectivity between the two passband regions, the diplexer incorporates five transmission poles (TPs) within its design. Similarly, the triplexer filter employs seven transmission poles to attain the desired performance across all three passbands. A comprehensive comparison was conducted against previously reported designs, considering crucial parameters such as size, insertion loss, return loss, and isolation between the two frequency bands. The fabrication of the diplexer and triplexer was carried out on a compact Rogers Duroid 5880 substrate. The experimental results demonstrate an exceptional performance, with the diplexer exhibiting a low insertion loss of 0.3 dB at 2.55 GHz and 0.4 dB at 3.94 GHz. The triplexer exhibits an insertion loss of 0.3 dB at 2.55 GHz, 0.37 dB at 3.94 GHz, and 0.2 dB at 5.75 GHz. The measured performance of the fabricated diplexer and triplexer aligns well with the simulated results, validating their effectiveness in meeting the desired specifications. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

Back to TopTop