molecules-logo

Journal Browser

Journal Browser

Pharmacology of Natural Product

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 20068

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia
Interests: anti-inflammatory; antioxidant; cell signaling; animal cell culture; zebrafish embryo toxicity test

E-Mail Website
Guest Editor
Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
Interests: drug discovery involving extraction; isolation; characterization and bioactivity study of natural products from plants; wound healing; anticancer; anti-obesity and antidiabetes study of several medicinal plants using animal cell culture
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Molecules on the “Pharmacology of Natural Products” invites papers that make contributions to the area of natural product research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. Manuscripts describing the biological activity of new compounds are of particular interest.

Dr. Syahida Ahmad
Dr. Muhammad Taher
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactivity of natural products
  • pharmacognosy and phytochemistry
  • bioinformatics and chemoinformatics
  • metabolomics and profiling technologies
  • ethnobotany and ethnopharmacology
  • traditional and complimentary medicines
  • synthetic and semisynthetic approaches in natural product research, isolation, and characterization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 4552 KiB  
Article
Antibacterial Potency of an Active Compound from Sansevieria trifasciata Prain: An Integrated In Vitro and In Silico Study
by Henny Kasmawati, Ruslin Ruslin, Arfan Arfan, Nurramadhani A. Sida, Dimas Isnu Saputra, Eli Halimah and Resmi Mustarichie
Molecules 2023, 28(16), 6096; https://doi.org/10.3390/molecules28166096 - 17 Aug 2023
Cited by 2 | Viewed by 2369
Abstract
Sansevieria trifasciata Prain holds great potential as a valuable asset in pharmaceutical development. In this study, our focus is to explore and assess the antibacterial activity of various components derived from this plant, including extracts, fractions, subfractions, and isolates, explicitly targeting two common [...] Read more.
Sansevieria trifasciata Prain holds great potential as a valuable asset in pharmaceutical development. In this study, our focus is to explore and assess the antibacterial activity of various components derived from this plant, including extracts, fractions, subfractions, and isolates, explicitly targeting two common bacteria: Escherichia coli and Streptococcus aureus. The isolated compound, identified as a derivative pyridone alkaloid (5-methyl-11-(2-oxopyridin-1(2H)-yl)undecaneperoxoicacid), demonstrates notable antibacterial effects. The extracts, fractions, subfractions, and isolates reveal significant bacterial growth reductions (p < 0.05). The minimum inhibitory concentration (MIC) values for Escherichia coli were 1.95 ppm, 3.9 ppm, 15.62 ppm, and 7.81 ppm, respectively, while the MIC values for Streptococcus aureus were 1.95 ppm, 1.95 ppm, 15.62 ppm, and 7.81 ppm, respectively. Computational analysis showed the isolates’ interaction with key residues on the active site of β-ketoacyl-ACP synthase from Escherichia coli and TyrRS from Streptococcus aureus. The findings indicate that the isolates exhibit a strong affinity for specific residues, including His333, Cys163, and Phe392 in β-ketoacyl-ACP synthase, as well as Arg88, His117, Glu160, and Gln213 in TyrRS. Comparative energy calculations using MMPBSA demonstrate the isolates’ favorable binding energy (−104,101 kJ/mol for β-ketoacyl-ACP synthase and −81,060 kJ/mol for TyrRS) compared to ciprofloxacin. The elucidated antibacterial activity and molecular interactions of the isolates present valuable knowledge for future in vitro studies, facilitating the development of novel antibacterial agents targeting diverse bacterial strains. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Graphical abstract

16 pages, 2631 KiB  
Article
In Silico Study and Effects of BDMC33 on TNBS-Induced BMP Gene Expressions in Zebrafish Gut Inflammation-Associated Arthritis
by Farhana Mostofa, Nur Adeela Yasid, Suhaili Shamsi, Siti Aqlima Ahmad, Nur Fatihah Mohd-Yusoff, Faridah Abas and Syahida Ahmad
Molecules 2022, 27(23), 8304; https://doi.org/10.3390/molecules27238304 - 28 Nov 2022
Cited by 1 | Viewed by 2070
Abstract
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut–joint axis; however, the genetic players are still [...] Read more.
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut–joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Figure 1

10 pages, 1301 KiB  
Article
Parkia platycephala Lectin (PPL) Inhibits Orofacial Nociception Responses via TRPV1 Modulation
by Gerlânia de Oliveira Leite, Sacha Aubrey Alves Rodrigues Santos, Romério Rodrigues dos Santos Silva, Claudener Souza Teixeira and Adriana Rolim Campos
Molecules 2022, 27(21), 7506; https://doi.org/10.3390/molecules27217506 - 3 Nov 2022
Cited by 5 | Viewed by 1950
Abstract
Lectins are a heterogeneous group of proteins that reversibly bind to simple sugars or complex carbohydrates. The plant lectin purified from the seed of Parkia platycephala (PPL) was studied. This study aimed to investigate the possible orofacial antinociceptive of PPL lectin in adult [...] Read more.
Lectins are a heterogeneous group of proteins that reversibly bind to simple sugars or complex carbohydrates. The plant lectin purified from the seed of Parkia platycephala (PPL) was studied. This study aimed to investigate the possible orofacial antinociceptive of PPL lectin in adult zebrafish and rodents. Acute nociception was induced by cinnamaldehyde (0.66 μg/mL), 0.1% acidified saline, glutamate (12.5 µM) or hypertonic saline (5 M NaCl) applied into the upper lip (5.0 µL) of adult wild zebrafish. Zebrafish were pretreated by intraperitoneal injection (20 µL) with vehicle (Control) or PPL (0.025; 0.05 or 0.1 mg/mL) 30 min before induction. The effect of PPL on zebrafish locomotor behaviour was evaluated in the open field test. Naive groups were included in all tests. In one experiment, animals were pre-treated with capsazepine to investigate the mechanism of antinociception. The involvement of central afferent C-fibres was also investigated. In another experiment, rats pre-treated with PPL or saline were submitted to the temporomandibular joint formalin test. Other groups of rats were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of mechanical sensitivity using von Frey. PPL reduced nociceptive behaviour in adult zebrafish, and this is related to the activation of the TRPV1 channels since antinociception was effectively inhibited by capsazepine and by capsaicin-induced desensitization. PPL reduced nociceptive behaviour associated with temporomandibular joint and neuropathic pain. The results confirm the potential pharmacological relevance of PPL as an inhibitor of orofacial nociception in acute and chronic pain. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Figure 1

17 pages, 5251 KiB  
Article
Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio)
by Siti Nur Sharmila Abdullah, Kalai Arasu Subramaniam, Zahir Haizat Muhamad Zamani, Seri Narti Edayu Sarchio, Faizah Md Yasin and Suhaili Shamsi
Molecules 2022, 27(14), 4493; https://doi.org/10.3390/molecules27144493 - 14 Jul 2022
Cited by 9 | Viewed by 2252
Abstract
Curcumin (CUR) has been studied for its biomedical applications due to its active biological properties. However, CUR has limitations such as poor solubility, low bioavailability, and rapid degradation. Thus, CUR was nanoformulated with the application of polymeric micelle. Previous studies of CUR-loaded Pluronic [...] Read more.
Curcumin (CUR) has been studied for its biomedical applications due to its active biological properties. However, CUR has limitations such as poor solubility, low bioavailability, and rapid degradation. Thus, CUR was nanoformulated with the application of polymeric micelle. Previous studies of CUR-loaded Pluronic F127 nanoformulation (NanoCUR) were generally prioritized toward cancer cells and its therapeutic values. There are reports that emphasize the toxicity of CUR, but reports on the toxicity of NanoCUR on embryonic developmental stages is still scarce. The present study aims to investigate the toxicity effects of NanoCUR on the embryonic development of zebrafish (Danio rerio). NanoCUR was synthesized via thin film hydration method and then characterized using DLS, UV-Vis, FTIR, FESEM, and XRD. The toxicity assessment of NanoCUR was conducted using zebrafish embryos, in comparison to native CUR, as well as Pluronic F127 (PF) as the controls, and ROS assay was further carried out. It was revealed that NanoCUR showed an improved toxicity profile compared to native CUR. NanoCUR displayed a delayed toxicity response and showed a concentration- and time-dependent toxicity response. NanoCUR was also observed to generate a significantly low reactive oxygen species (ROS) compared to native CUR in ROS assay. Overall, the results obtained highlight the potential of NanoCUR to be developed in clinical settings due to its improved toxicity profile compared to CUR. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Figure 1

10 pages, 1761 KiB  
Article
The Attenuating Effect of Beta-Carotene on Streptozotocin Induced Diabetic Vascular Dementia Symptoms in Rats
by Khian Giap Lim, Rajavel Varatharajan and Arunachalam Muthuraman
Molecules 2022, 27(13), 4293; https://doi.org/10.3390/molecules27134293 - 4 Jul 2022
Cited by 7 | Viewed by 2500
Abstract
This study investigated the ameliorative effects of beta-carotene (BC) on diabetes-associated vascular dementia and its action against biomolecule oxidation. The diabetic vascular dementia (VaD) was induced by administration of nicotinamide (NA; 50 mg/kg; i.p.) and streptozotocin (STZ; 50 mg/kg; i.p.). The [...] Read more.
This study investigated the ameliorative effects of beta-carotene (BC) on diabetes-associated vascular dementia and its action against biomolecule oxidation. The diabetic vascular dementia (VaD) was induced by administration of nicotinamide (NA; 50 mg/kg; i.p.) and streptozotocin (STZ; 50 mg/kg; i.p.). The test compound, BC (50 and 100 mg/kg; p.o.), and the reference compound, donepezil (DP) (1 mg/kg; p.o.), were administered for 15 consecutive days. Changes in learning and memory were assessed by escape latency time (ELT) and times spent in target quadrant (TSTQ) in the Morris water maze (MWM) test. The changes in neurotransmitter, i.e., acetylcholinesterase (AChE) and oxidative stress markers, i.e., thiobarbituric acid reactive substance (TBARS) and reduced glutathione (GSH), were estimated in hippocampal tissue of the rat brain. The administration of STZ caused significant deterioration of cognitive function (decreased ELT and raised the TSTQ) as compared to the normal group. Treatment with BC and DP diminished the increased AChE activity, TBARS level and decreased GSH level caused by STZ. Thus, BC ameliorates the diabetic vascular complications in VaD due to its potential anticholinergic, antioxidative and free radical scavenging actions. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 3848 KiB  
Review
Advocacy for the Medicinal Plant Artabotrys hexapetalus (Yingzhao) and Antimalarial Yingzhaosu Endoperoxides
by Christian Bailly and Jean-Pierre Hénichart
Molecules 2022, 27(19), 6192; https://doi.org/10.3390/molecules27196192 - 21 Sep 2022
Cited by 6 | Viewed by 2962
Abstract
The medicinal plant Artabotrys hexapetalus (synonyms: A.uncinatus and A. odoratissimus) is known as yingzhao in Chinese. Extracts of the plant have long been used in Asian folk medicine to treat various symptoms and diseases, including fevers, microbial infections, ulcers, hepatic disorders [...] Read more.
The medicinal plant Artabotrys hexapetalus (synonyms: A.uncinatus and A. odoratissimus) is known as yingzhao in Chinese. Extracts of the plant have long been used in Asian folk medicine to treat various symptoms and diseases, including fevers, microbial infections, ulcers, hepatic disorders and other health problems. In particular, extracts from the roots and fruits of the plant are used for treating malaria. Numerous bioactive natural products have been isolated from the plant, mainly aporphine (artabonatines, artacinatine) and benzylisoquinoline (hexapetalines) alkaloids, terpenoids (artaboterpenoids), flavonoids (artabotrysides), butanolides (uncinine, artapetalins) and a small series of endoperoxides known as yingzhaosu A-to-D. These natural products confer antioxidant, anti-inflammatory and antiproliferative properties to the plant extracts. The lead compound yingzhaosu A displays marked activities against the malaria parasites Plasmodium falciparum and P. berghei. Total syntheses have been developed to access yingzhaosu compounds and analogues, such as the potent compound C14-epi-yingzhaosu A and simpler molecules with a dioxane unit. The mechanism of action of yingzhaosu A points to an iron(II)-induced degradation leading to the formation of two alkylating species, an unsaturated ketone and a cyclohexyl radical, which can then react with vital parasitic proteins. A bioreductive activation of yingzhaosu A endoperoxide can also occur with the heme iron complex. The mechanism of action of yingzhaosu endoperoxides is discussed, to promote further chemical and pharmacological studies of these neglected, but highly interesting bioactive compounds. Yingzhaosu A/C represent useful templates for designing novel antimalarial drugs. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Graphical abstract

28 pages, 976 KiB  
Review
Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols
by Arslan Iftikhar, Rimsha Nausheen, Humaira Muzaffar, Muhammad Ahsan Naeem, Muhammad Farooq, Mohsin Khurshid, Ahmad Almatroudi, Faris Alrumaihi, Khaled S. Allemailem and Haseeb Anwar
Molecules 2022, 27(10), 3297; https://doi.org/10.3390/molecules27103297 - 20 May 2022
Cited by 15 | Viewed by 4987
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed [...] Read more.
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades. Full article
(This article belongs to the Special Issue Pharmacology of Natural Product)
Show Figures

Figure 1

Back to TopTop