molecules-logo

Journal Browser

Journal Browser

Essential Oils

A topical collection in Molecules (ISSN 1420-3049). This collection belongs to the section "Flavours and Fragrances".

Viewed by 43142

Editors


E-Mail Website
Collection Editor
Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
Interests: food flavors—formation and analytical aspects; extraction techniques in flavor analysis; gas chromatography–mass spectrometry in aroma research; electronic noses; food volatiles for authenticity testing; microbial volatiles; off-flavors
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Collection Editor
Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida, 50-375 Wrocław, Poland
Interests: essential oil; biotransformation; volatile compounds; organic synthesis; GC-MS analysis; NMR analysis; herbs; drying; pheromones; deeding deterrent
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Aromatic plants and the essential oils derived from them play an important role in many aspects of our life, including cuisine, food technology, aromatherapy, and the F&F industry to name but a few. This Topical Collection of the journal Molecules will bring together research from this field.

Papers addressing, but not limited to, the following topics are welcome:

  • The analytical aspects of essential oils;
  • Biogeneration and biotechnology;
  • Chemotaxonomy;
  • The nonflavour-related activities of essential oils and their constituents.

Manuscripts will be reviewed by specialists in the field of essential oil research.

Prof. Dr. Henryk H. Jeleń
Prof. Dr. Antoni Szumny
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (15 papers)

2024

Jump to: 2023, 2022, 2021

13 pages, 472 KiB  
Article
Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam.
by Jesús Palá-Paúl, María José Pérez-Alonso, Ana C. Soria and Joseph J. Brophy
Molecules 2024, 29(3), 562; https://doi.org/10.3390/molecules29030562 - 23 Jan 2024
Cited by 1 | Viewed by 1445
Abstract
Eryngium dilatatum Lam. is a thorny Iberian Peninsula endemic species belonging to the Apiaceae family that has not been previously analysed from a chemical point of view. Following our studies on this genus, we characterized the chemical composition of the essential oils from [...] Read more.
Eryngium dilatatum Lam. is a thorny Iberian Peninsula endemic species belonging to the Apiaceae family that has not been previously analysed from a chemical point of view. Following our studies on this genus, we characterized the chemical composition of the essential oils from the different parts (inflorescences, stems + leaves, and roots) of this species; these parts were gathered in Cádiz (Spain). The specimens were collected in July during the flowering period and air-dried before the oil extraction by hydro-distillation. The essential oils were analysed by gas chromatography and gas chromatography coupled with mass spectrometry. The different parts of the plant yielded low amounts of pale yellow oil, with the roots being the fraction that provided the lowest amount of oil. The chemical characterization of the essential oils showed qualitative and quantitative differences between the fractions examined, but all of them showed the same principal compound, germacrene D (9.1–46.5%). Similarly, all the fractions shared most of their representative constituents, with their percentage compositions being different from one sample to the other: α-cadinol (3.8%), bicyclogermacrene (3.5%), octanal (3.1%), and spathulenol (2.5%) were found in the inflorescences; octanal (8.1%), α-cadinol (3.7%), δ-cadinene (3.6%), (E)-caryophyllene (2.6%), bicyclogermacrene (2.5%), and spathulenol (2.4%) were found in the stems and leaves; and spathulenol (4.6%), α-cadinol (4.4%), khusinol (3.2%), α-muurolol (3.1%), and δ-cadinene (2.6%) were found in the roots. As far as we know, this is the first report about the chemical composition of this endemic species of the Iberian Peninsula. It contributes to the knowledge of this species and to the genus to which it belongs. This species could be considered as a natural source of germacrene D, which is a sesquiterpene hydrocarbon with active properties. Full article
Show Figures

Figure 1

2023

Jump to: 2024, 2022, 2021

13 pages, 2781 KiB  
Article
Variations in Essential Oils from the Leaves of Cinnamomum bodinieri in China
by Chao Fu, Xinliang Liu, Qian Liu, Fengying Qiu, Jindong Yan, Yueting Zhang, Ting Zhang and Jianan Li
Molecules 2023, 28(9), 3659; https://doi.org/10.3390/molecules28093659 - 23 Apr 2023
Cited by 4 | Viewed by 2007
Abstract
Cinnamomum plants are rich in natural essential oils, which are widely used as materials in the fragrance, insecticidal, antibacterial agent, pharmaceutical, and food industries; however, few studies have investigated the essential oil components of Cinnamomum bodinieri. Therefore, this study investigated the diversity [...] Read more.
Cinnamomum plants are rich in natural essential oils, which are widely used as materials in the fragrance, insecticidal, antibacterial agent, pharmaceutical, and food industries; however, few studies have investigated the essential oil components of Cinnamomum bodinieri. Therefore, this study investigated the diversity of essential oils from the leaves of 885 individual C. bodinieri plants across 32 populations in five provinces. Essential oils were extracted by hydrodistillation, and then qualitative and quantitative analyses of the compounds were performed by GC-MS and GC-FID. A total of 87 chemical constituents were identified in the essential oils, including 33 monoterpenes, 48 sesquiterpenes, and six other compounds. The average oil yield was 0.75%, and individual oil yields ranged from 0.01% to 4.28%. A total of 16 chemotypes were classified according to variations in the essential oil chemical constituents of C. bodinieri, among which the camphor-type, citral-type, and eucalyptol-type were dominant. Moreover, the borneol-type, cymol-type, elemol-type, methylisoeugenol-type, and selina-6-en-4-ol-type were reported in C. bodinieri for the first time. The yield and principal components of the essential oils were mainly affected by altitude, temperature, and sunshine duration, among which altitude had the most significant effect; thus, low-altitude areas are more suitable for the synthesis and accumulation of essential oils. Based on the different characteristics of the essential oils in the leaves of C. bodinieri, several excellent populations and individuals were identified in this study. Moreover, the findings provide a foundation for breeding superior varieties and studying essential oil biosynthesis mechanisms in the future. Full article
Show Figures

Figure 1

20 pages, 1138 KiB  
Article
In Vitro Evaluation of Antiprotozoal Properties, Cytotoxicity Effect and Anticancer Activity of New Essential-Oil Based Phytoncide Mixtures
by Hubert Iwiński, Henryk Różański, Natalia Pachura, Aleksandra Wojciechowska, Tomasz Gębarowski and Antoni Szumny
Molecules 2023, 28(3), 1395; https://doi.org/10.3390/molecules28031395 - 1 Feb 2023
Cited by 3 | Viewed by 3103
Abstract
Protozoa, in both humans and animals, are one of the leading causes of disease. International programmes introduced in many countries have helped reduce the incidence of disease. However, it has recently become increasingly difficult to achieve the goals set for the coming years. [...] Read more.
Protozoa, in both humans and animals, are one of the leading causes of disease. International programmes introduced in many countries have helped reduce the incidence of disease. However, it has recently become increasingly difficult to achieve the goals set for the coming years. One of the main reasons for this, as with other pathogenic organisms, such as bacteria and fungi, is the increasing resistance to current methods of treating and preventing infection. Therefore, new therapies with high efficacy are needed. In the present study, the novel mixtures of essential oils (EOs), clove, garlic, Ceylon cinnamon, and rosemary with organic acids (acetic, propionic, lactic) and metal ions (Cu, Mn, Zn) were tested against five selected model protozoa (Euglena gracilis, Gregarina blattarum, Amoeba proteus, Paramecium caudatum, Pentatrichomonas hominis). The cytotoxicity and potential anticancer activity of the obtained combinations were tested on the human fibroblasts (NHDF) and human cancer cell lines (A549, MCF7, LoVo, HT29). All of the mixtures showed very good antiprotozoal properties. The most efficient were the combination of clove and rosemary essential oils, mixtures of acids, and Mn ions. The LD50 values were in the range of 0.001–0.006% and the LD100 values were 0.002–0.008%. All of the tested mixtures did not show cytotoxicity against normal cells, but did show growth inhibition against cancer cell lines. The most cytotoxic against cancer cells were combinations with cinnamon essential oil. Nevertheless, the proposed combinations containing essential oils, organic acids, and metal ions have high antiprotozoal activity, with low toxicity to healthy human cells. Full article
Show Figures

Figure 1

14 pages, 1548 KiB  
Article
Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China
by Ana Dobreva and Daniela Nedeltcheva-Antonova
Molecules 2023, 28(3), 1281; https://doi.org/10.3390/molecules28031281 - 28 Jan 2023
Cited by 7 | Viewed by 2178
Abstract
The chemical composition and aroma profile of industrial essential oils (EOs) from species of rose grown in China, including the native Kushui rose (R. sertata × R. rugosa) and R. rugosa Thunb. cv. Plena, and the recently introduced Damask rose ( [...] Read more.
The chemical composition and aroma profile of industrial essential oils (EOs) from species of rose grown in China, including the native Kushui rose (R. sertata × R. rugosa) and R. rugosa Thunb. cv. Plena, and the recently introduced Damask rose (R. damascena Mill.), were studied in comparison by means of GC/MS and GC-FID. More than 150 individual compounds were detected in Chinese rose samples, of which 112 were identified and their quantitative content determined, representing 88.7%, 96.7% and 97.9% of the total EO content, respectively. It was found that the main constituents of the Chinese rose EOs were representatives of terpenoid compounds (mono- and sesquiterpenoids, predominantly) and aliphatic hydrocarbons. Comparative chemical profiling revealed different chemical composition and aroma profiles: while the R. damascena oil showed a balance between the eleoptene and stearoptene fractions of the oil (the average ratio between the main terpene alcohols and paraffins was 2.65), in the Kushui and R. rugosa oils, the odorous liquid phase strongly dominated over the stearopten, with a ratio of 16.91 and 41.43, respectively. The most abundant terpene was citronellol, ranging from 36.69% in R. damascena to 48.32% in R. rugosa oil. In addition, the citronellol enantiomers distribution, which is an important marker for rose oil authenticity, was studied for the first time in R. rugosa oil. Full article
Show Figures

Figure 1

15 pages, 1320 KiB  
Article
Chemical Variation and Environmental Influence on Essential Oil of Cinnamomum camphora
by Ting Zhang, Yongjie Zheng, Chao Fu, Haikuan Yang, Xinliang Liu, Fengying Qiu, Xindong Wang and Zongde Wang
Molecules 2023, 28(3), 973; https://doi.org/10.3390/molecules28030973 - 18 Jan 2023
Cited by 18 | Viewed by 2479
Abstract
Cinnamomum camphora is a traditional aromatic plant used to produce linalool and borneol flavors in southern China; however, its leaves also contain many other unutilized essential oils. Herein, we report geographic relationships for the yield and compositional diversity of C. camphora essential oils. [...] Read more.
Cinnamomum camphora is a traditional aromatic plant used to produce linalool and borneol flavors in southern China; however, its leaves also contain many other unutilized essential oils. Herein, we report geographic relationships for the yield and compositional diversity of C. camphora essential oils. The essential oils of 974 individual trees from 35 populations in 13 provinces were extracted by hydrodistillation and analyzed qualitatively and quantitatively by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection, respectively. Oil yields ranged from 0.01% to 3.46%, with a significantly positive correlation with latitude and a significantly negative correlation with longitude. In total, 41 compounds were identified, including 15 monoterpenoids, 24 sesquiterpenoids, and two phenylpropanoids. Essential oil compositions varied significantly among individuals and could be categorized into various chemotypes. The six main chemotypes were eucalyptol, nerolidol, camphor, linalool, selina, and mixed types. The other 17 individual plants were chemotypically rare and exhibited high levels of methyl isoeugenol, methyl eugenol, δ-selinene, or borneol. Eucalyptol-type plants had the highest average oil yield of 1.64%, followed in decreasing order by linalool-, camphor-, mixed-, selina-, and nerolidol-type plants. In addition, the five main compounds exhibited a clear geographic gradient. Eucalyptol and linalool showed a significantly positive correlation with latitude, while selina-6-en-4-ol was significantly and negatively correlated with latitude. trans-Nerolidol and selina-6-en-4-ol showed significantly positive correlations with longitude, whereas camphor was significantly and negatively correlated with longitude. Canonical correspondence analysis indicated that environmental factors could strong effect the oil yield and essential oil profile of C. camphora. Full article
Show Figures

Figure 1

2022

Jump to: 2024, 2023, 2021

21 pages, 1278 KiB  
Article
Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand
by Sushila Arya, Ravendra Kumar, Om Prakash, Satya Kumar, Sonu Kumar Mahawer, Shivangi Chamoli, Piyush Kumar, Ravi Mohan Srivastava and Mozaniel Santana de Oliveira
Molecules 2022, 27(15), 4833; https://doi.org/10.3390/molecules27154833 - 28 Jul 2022
Cited by 17 | Viewed by 2763
Abstract
Hedychium coccineum Buch. Ham. ex Sm. is a perennial rhizomatous herb belonging to the family Zingiberaceae. The aim of the present study was to compare the chemical composition and biological activities of H. coccineum rhizome essential oil (HCCRO) and H. coccineum aerial part [...] Read more.
Hedychium coccineum Buch. Ham. ex Sm. is a perennial rhizomatous herb belonging to the family Zingiberaceae. The aim of the present study was to compare the chemical composition and biological activities of H. coccineum rhizome essential oil (HCCRO) and H. coccineum aerial part essential oil (HCCAO). The plant material was subjected to hydro-distillation using Clevenger’s apparatus in order to obtain volatile oil and analyzed for its chemical constituents using GC-MS. The comparative study of the rhizome and aerial part essential oils of H. coccineum displayed that (E)-nerolidol (15.9%), bornyl acetate (13.95%), davanone B (10.9%), spathulenol (8.9%), and 1, 8-cineol (8.5%) contributed majorly to the HCCRO, while 7-hydroxyfarnesen (15.5%), α-farnesene (11.1%), α-pinene (10.9%), spathulenol (7.7%), and β-pinene (6.8%) were present as major constituents in the HCCAO. Both the essential oils were studied for their biological activities, such as nematicidal, insecticidal, herbicidal, antifungal, and antibacterial activities. The essential oils exhibited significant nematicidal activity against Meloidogyne incognita, insecticidal activity against Spodoptera litura, and moderate herbicidal activity against R. raphanistrum sub sp. sativus, and good antifungal activity against Fusarium oxysporum and Curvularialunata. Essential oils were also tested for antibacterial activity against Staphylococcus aureus and Salmonella enterica serotype Typhi. Both oils showed good to moderate activity against the tested pathogens. The significant nematicidal, insecticidal, herbicidal, antifungal, and antibacterial activities of both the essential oils might be helpful for the development of environmentally friendly pesticides that could be an alternative to synthetic pesticides in the future. Full article
Show Figures

Figure 1

18 pages, 1322 KiB  
Article
Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study
by Celeste de Jesus Pereira Franco, Oberdan Oliveira Ferreira, Jorddy Neves Cruz, Everton Luiz Pompeu Varela, Ângelo Antônio Barbosa de Moraes, Lidiane Diniz do Nascimento, Márcia Moraes Cascaes, Antônio Pedro da Silva Souza Filho, Rafael Rodrigues Lima, Sandro Percário, Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade
Molecules 2022, 27(15), 4678; https://doi.org/10.3390/molecules27154678 - 22 Jul 2022
Cited by 11 | Viewed by 2224
Abstract
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization [...] Read more.
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex. Full article
Show Figures

Figure 1

16 pages, 1201 KiB  
Article
Neuropeltis acuminata (P. Beauv.): Investigation of the Chemical Variability and In Vitro Anti-inflammatory Activity of the Leaf Essential Oil from the Ivorian Species
by Didjour Albert Kambiré, Ahmont Claude Landry Kablan, Thierry Acafou Yapi, Sophie Vincenti, Jacques Maury, Nicolas Baldovini, Pierre Tomi, Mathieu Paoli, Jean Brice Boti and Félix Tomi
Molecules 2022, 27(12), 3759; https://doi.org/10.3390/molecules27123759 - 10 Jun 2022
Cited by 7 | Viewed by 1859
Abstract
The variability of chemical composition of the leaf essential oil (EO) from Neuropeltis acuminata, a climbing liana growing wild in Ivory Coast, was investigated for the first time. The in vitro anti-inflammatory activity was also evaluated. Thirty oil samples were isolated from [...] Read more.
The variability of chemical composition of the leaf essential oil (EO) from Neuropeltis acuminata, a climbing liana growing wild in Ivory Coast, was investigated for the first time. The in vitro anti-inflammatory activity was also evaluated. Thirty oil samples were isolated from leaves collected in three forests of the country and analyzed using a combination of Column Chromatography (CC), Gas Chromatography with Retention Indices (GC(FID)), Gas Chromatography-Mass Spectrometry (GC-MS), and 13Carbon-Nuclear Magnetic Resonance (13C-NMR). Fractionation by CC led to the first-time isolation from natural source of δ-cadinen-11-ol, whose structural elucidation by one dimension (1D) and 2D-NMR spectroscopy is reported here. Finally, 103 constituents accounting for 95.7 to 99.6% of the samples’ compositions were identified. As significant variations of the major constituents were observed, the 30 oil compositions were submitted to hierarchical cluster and principal components analyses. Five distinct groups were evidenced: Group I, dominated by (E)-β-caryophyllene, kessane, and δ-cadinene, while the main constituents of Group II were germacrene B, ledol, α-humulene, (E)-γ-bisabolen-12-ol, and γ-elemene. Group III exhibited guaiol, germacrene D, atractylone, (E)-γ-bisabolen-12-ol, δ-cadinene and bulnesol as main compounds. Group IV was dominated by (E)-nerolidol, guaiol, selina-4(15),7(11)-diene and bulnesol, whereas (E)-β-caryophyllene, α-humulene and α-muurolene were the prevalent compounds of Group V. As the harvest took place in the same dry season in the three forests, the observed chemical variability could be related to harvest sites, which includes climatic and pedologic factors, although genetic factors could not be excluded. The leaf oil sample S24 behaved as a high inhibitor of LipOXygenase (LOX) activity (half maximum Inhibitory Concentration, IC50: 0.059 ± 0.001 mg mL−1), suggesting an anti-inflammatory potential. Full article
Show Figures

Graphical abstract

20 pages, 6887 KiB  
Article
Chemical Diversity and Potential Target Network of Woody Peony Flower Essential Oil from Eleven Representative Cultivars (Paeonia × suffruticosa Andr.)
by Gaoming Lei, Chaoying Song, Xinyue Wen, Guoyu Gao and Yanjie Qi
Molecules 2022, 27(9), 2829; https://doi.org/10.3390/molecules27092829 - 29 Apr 2022
Cited by 8 | Viewed by 2854
Abstract
Woody peony (Paeonia × suffruticosa Andr.) has many cultivars with genetic variances. The flower essential oil is valued in cosmetics and fragrances. This study was to investigate the chemical diversity of essential oils of eleven representative cultivars and their potential target network. [...] Read more.
Woody peony (Paeonia × suffruticosa Andr.) has many cultivars with genetic variances. The flower essential oil is valued in cosmetics and fragrances. This study was to investigate the chemical diversity of essential oils of eleven representative cultivars and their potential target network. Hydro-distillation afforded yields of 0.11–0.25%. Essential oils were analyzed by GC-MS and GC-FID which identified 105 compounds. Three clusters emerged from multivariate analysis, representative of phloroglucinol trimethyl ether (‘Caihui’), citronellol (‘Jingyu’, ‘Zhaofen’ and ‘Baiyuan Zhenghui’) and mixed (the rest of the cultivars) chemotypes. ‘Zhaofen’ and ‘Jingyu’ also exhibited low levels of other rose-related compounds. The main components were subjected to a target network approach. Drug-likeness screening gave 20 compounds with predictive blood–brain barrier permeation. Compound target network identified six key compounds, namely nerol, citronellol, geraniol, geranic acid, cis-3-hexen-1-ol and 1-hexanol. Top enriched terms in GO, KEGG and DisGeNET were mostly related to the central nervous system (CNS). Protein—protein interactions revealed a core network of 14 targets, 11 of which were CNS-related (targets for antidepressants, analgesics, antipsychotics, anti-Alzheimer’s and anti-Parkinson’s agents). This work provides useful information on the production of woody peony essential oils with specific chemotypes and reveals their potential importance in aromatherapy for alternative treatment of CNS disorders. Full article
Show Figures

Figure 1

2021

Jump to: 2024, 2023, 2022

10 pages, 1208 KiB  
Article
Volatolomics of Three South African Helichrysum Species Grown in Pot under Protected Environment
by Basma Najar, Ylenia Pieracci, Claudio Cervelli, Guido Flamini and Luisa Pistelli
Molecules 2021, 26(23), 7283; https://doi.org/10.3390/molecules26237283 - 30 Nov 2021
Cited by 3 | Viewed by 1872
Abstract
Helichrysum decorum DC, Helichrysum lepidissimum S. Moore, and Helichrysum umbraculigerum are three species traditionally used in the South African medicine. The present work deals with the investigation of the spontaneous emission and the essential oils obtained from these plants cultivated in open field [...] Read more.
Helichrysum decorum DC, Helichrysum lepidissimum S. Moore, and Helichrysum umbraculigerum are three species traditionally used in the South African medicine. The present work deals with the investigation of the spontaneous emission and the essential oils obtained from these plants cultivated in open field under uniform conditions. Fractions of the volatile organic compounds of the three species were rich in monoterpene hydrocarbons, representing more than 70% of the total composition. Pinene isomers were the most representative compounds: β-pinene in H. decorum (53.0%), and α-pinene in H. lepidissimum (67.9%) and H. umbraculigerum (54.8%). These latter two species evidenced an important amount of sesquiterpene hydrocarbons (SH) especially represented by γ-curcumene (H. lepidissimum) and α- and β-selinene (H. umbraculigerum). On the contrary, in the EOs, sesquiterpenes compounds prevailed, representing more than 64% of the identified fraction to reach more than 82 and 87% in H. umbraculigerum and H. lepidissimum, respectively. Although the chemical classes and their relative abundances were comparable among the three species, the individual compounds of EOs showed large differences. In fact, caryophyllene oxide (26.7%) and γ-curcumene (17.4%) were the main constituents in H. decorum, and H. lepidissimum respectively, while neo-intermedeol (11.2%) and viridiflorol (10.6%) characterized H. umbraculigerum. Full article
Show Figures

Graphical abstract

10 pages, 272 KiB  
Article
The Inhibition of Non-albicans Candida Species and Uncommon Yeast Pathogens by Selected Essential Oils and Their Major Compounds
by Narcisa Mandras, Janira Roana, Daniela Scalas, Simonetta Del Re, Lorenza Cavallo, Valeria Ghisetti and Vivian Tullio
Molecules 2021, 26(16), 4937; https://doi.org/10.3390/molecules26164937 - 15 Aug 2021
Cited by 22 | Viewed by 2935
Abstract
The epidemiology of yeast infections and resistance to available antifungal drugs are rapidly increasing, and non-albicans Candida species and rare yeast species are increasingly emerging as major opportunistic pathogens. In order to identify new strategies to counter the threat of antimicrobial resistant [...] Read more.
The epidemiology of yeast infections and resistance to available antifungal drugs are rapidly increasing, and non-albicans Candida species and rare yeast species are increasingly emerging as major opportunistic pathogens. In order to identify new strategies to counter the threat of antimicrobial resistant microorganisms, essential oils (EOs) have become an important potential in the treatment of fungal infections. EOs and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities. We investigated the in vitro antifungal activity of nine commercial EOs such as Thymus vulgaris (thyme red), Origanum vulgare (oregano), Lavandula vera (lavender), Pinus sylvestris (pine), Foeniculum vulgare (fennel), Melissa officinalis (lemon balm), Salvia officinalis (sage), Eugenia caryophyllata (clove) and Pelargonium asperum (geranium), and some of their main components (α-pinene, carvacrol, citronellal, eugenol, γ-terpinene, linalool, linalylacetate, terpinen-4-ol, thymol) against non-albicans Candida strains and uncommon yeasts. The EOs were analyzed by GC-MS, and their antifungal properties were evaluated by minimum inhibitory concentration and minimum fungicidal concentration parameters, in accordance with CLSI guidelines, with some modifications for EOs. Pine exhibited strong antifungal activity against the selected non-albicans Candida isolates and uncommon yeasts. In addition, lemon balm EOs and α-pinene exhibited strong antifungal activity against the selected non-albicans Candida yeasts. Thymol inhibited the growth of all uncommon yeasts. These data showed a promising potential application of EOs as natural adjuvant for management of infections by emerging non-albicans Candida species and uncommon pathogenic yeasts. Full article
Show Figures

Graphical abstract

12 pages, 637 KiB  
Article
Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., Leaf of Family Myrtaceae
by Celeste de Jesus Pereira Franco, Oberdan Oliveira Ferreira, Ângelo Antônio Barbosa de Moraes, Everton Luiz Pompeu Varela, Lidiane Diniz do Nascimento, Sandro Percário, Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade
Molecules 2021, 26(11), 3292; https://doi.org/10.3390/molecules26113292 - 29 May 2021
Cited by 35 | Viewed by 4627
Abstract
Essential oils (EOs) were extracted from Eugenia patrisii, E. punicifolia, and Myrcia tomentosa, specimens A and B, using hydrodistillation. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the volatile constituents present, and the antioxidant capacity of EOs was [...] Read more.
Essential oils (EOs) were extracted from Eugenia patrisii, E. punicifolia, and Myrcia tomentosa, specimens A and B, using hydrodistillation. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the volatile constituents present, and the antioxidant capacity of EOs was determined using diphenylpicryl-hydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays. For E. patrisii, germacrene D (20.03%), bicyclogermacrene (11.82%), and (E)-caryophyllene (11.04%) were identified as the major constituents of the EOs extracted from specimen A, whereas specimen B primarily comprised γ-elemene (25.89%), germacrene B (8.11%), and (E)-caryophyllene (10.76%). The EOs of E. punicifolia specimen A contained β-Elemene (25.12%), (E)-caryophyllene (13.11%), and bicyclogermacrene (9.88%), while specimen B was composed of (E)-caryophyllene (11.47%), bicyclogermacrene (5.86%), β-pinene (5.86%), and γ-muurolene (5.55%). The specimen A of M. tomentosa was characterized by γ-elemene (12.52%), germacrene D (11.45%), and (E)-caryophyllene (10.22%), while specimen B contained spathulenol (40.70%), α-zingiberene (9.58%), and γ-elemene (6.89%). Additionally, the chemical composition of the EOs was qualitatively and quantitatively affected by the collection period. Furthermore, the EOs of the studied specimens, especially specimen A of E. punicifolia, showed a greater antioxidant activity in DPPH rather than TEAC, as represented by a significantly high inhibition percentage (408.0%). Full article
Show Figures

Figure 1

16 pages, 937 KiB  
Article
Soil and Leaf Nutrients Drivers on the Chemical Composition of the Essential Oil of Siparuna muricata (Ruiz & Pav.) A. DC. from Ecuador
by Juan I. Burneo, Ángel Benítez, James Calva, Pablo Velastegui and Vladimir Morocho
Molecules 2021, 26(10), 2949; https://doi.org/10.3390/molecules26102949 - 15 May 2021
Cited by 9 | Viewed by 2778
Abstract
Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in [...] Read more.
Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata. Full article
Show Figures

Figure 1

17 pages, 2604 KiB  
Article
Extraction of Peppermint Essential Oils and Lipophilic Compounds: Assessment of Process Kinetics and Environmental Impacts with Multiple Techniques
by Aleksandar Radivojac, Oskar Bera, Zoran Zeković, Nemanja Teslić, Živan Mrkonjić, Danijela Bursać Kovačević, Predrag Putnik and Branimir Pavlić
Molecules 2021, 26(10), 2879; https://doi.org/10.3390/molecules26102879 - 13 May 2021
Cited by 35 | Viewed by 6079
Abstract
Consumers are becoming more mindful of their well-being. Increasing awareness of the many beneficial properties of peppermint essential oil (EO) has significantly increased product sales in recent years. Hydrodistillation (HD), a proven conventional method, and a possible alternative in the form of microwave-assisted [...] Read more.
Consumers are becoming more mindful of their well-being. Increasing awareness of the many beneficial properties of peppermint essential oil (EO) has significantly increased product sales in recent years. Hydrodistillation (HD), a proven conventional method, and a possible alternative in the form of microwave-assisted hydrodistillation (MWHD) have been used to isolate peppermint EO. Standard Soxhlet and alternatively supercritical fluid (SFE), microwave-assisted, and ultrasound-assisted extraction separated the lipid extracts. The distillations employed various power settings, and the EO yield varied from 0.15 to 0.80%. The estimated environmental impact in terms of electricity consumption and CO2 emissions suggested that MWHD is an energy efficient way to reduce CO2 emissions. Different extraction methods and solvent properties affected the lipid extract yield, which ranged from 2.55 to 5.36%. According to the corresponding values of statistical parameters, empiric mathematical models were successfully applied to model the kinetics of MWHD and SFE processes. Full article
Show Figures

Figure 1

16 pages, 12186 KiB  
Article
Chemical Fingerprinting of Cryptic Species and Genetic Lineages of Aneura pinguis (L.) Dumort. (Marchantiophyta, Metzgeriidae)
by Rafał Wawrzyniak, Wiesław Wasiak, Beata Jasiewicz, Alina Bączkiewicz and Katarzyna Buczkowska
Molecules 2021, 26(4), 1180; https://doi.org/10.3390/molecules26041180 - 22 Feb 2021
Cited by 4 | Viewed by 2199
Abstract
Aneura pinguis (L.) Dumort. is a representative of the simple thalloid liverworts, one of the three main types of liverwort gametophytes. According to classical taxonomy, A. pinguis represents one morphologically variable species; however, genetic data reveal that this species is a complex consisting [...] Read more.
Aneura pinguis (L.) Dumort. is a representative of the simple thalloid liverworts, one of the three main types of liverwort gametophytes. According to classical taxonomy, A. pinguis represents one morphologically variable species; however, genetic data reveal that this species is a complex consisting of 10 cryptic species (named by letters from A to J), of which four are further subdivided into two or three evolutionary lineages. The objective of this work was to develop an efficient method for the characterisation of plant material using marker compounds. The volatile chemical constituents of cryptic species within the liverwort A. pinguis were analysed by GC-MS. The compounds were isolated from plant material using the HS-SPME technique. Of the 66 compounds examined, 40 were identified. Of these 40 compounds, nine were selected for use as marker compounds of individual cryptic species of A. pinguis. A guide was then developed that clarified how these markers could be used for the rapid identification of the genetic lineages of A. pinguis. Multivariate statistical analyses (principal component and cluster analysis) revealed that the chemical compounds in A. pinguis made it possible to distinguish individual cryptic species (including genetic lineages), with the exception of cryptic species G and H. The classification of samples based on the volatile compounds by cluster analysis reflected phylogenetic relationships between cryptic species and genetic lineages of A. pinguis revealed based on molecular data. Full article
Show Figures

Graphical abstract

Back to TopTop