Nonlinear Optical Property and Sensing Applications of Nanomaterials

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: 4 April 2025 | Viewed by 2416

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Interests: ultrafast fiber lasers; nonlinear optical devices; fiber sensing applications

Special Issue Information

Dear Colleagues,

Ultrafast fiber lasers have been one of the most intensively developed topics over the past decade due to their potential applications, including material processing, medicine, laser spectroscopy, and mid-infrared source generation. Saturable absorber (SA) is the key component for passively mode-locked fiber lasers. In order to generate ultrafast pulses, passively mode-locked lasers with different SAs have been intensively investigated. To date, different types of nanomaterials with intensity-dependent transmission properties have been used as SAs to generate ultrafast pulses at different wavelengths. However, the reported nanomaterials presented the properties that limited their performances as ultrafast lasers. Hence, it is significant to prepare an SA based on nanomaterials for constructing ultrafast fiber lasers.

This Special Issue aims to explore several outstanding nanomaterials for SA applications in ultrafast pulse generations. Moreover, as the ultrafast pulses transmit through optical fibers, interesting nonlinear devices would be formed. Combining the pulses with nanomaterials, various fiber laser sensing applications could be demonstrated.

Dr. Fang Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • saturable absorber
  • optical modulation
  • ultrafast fiber lasers
  • nonlinear optical devices
  • fiber laser sensing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

7 pages, 2101 KiB  
Article
Palladium Nanocubes as Saturable Absorbers for Mode-Locked Laser Generation at 1.56 μm
by Zhe Kang and Fang Wang
Nanomaterials 2024, 14(23), 1971; https://doi.org/10.3390/nano14231971 - 8 Dec 2024
Viewed by 642
Abstract
Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd [...] Read more.
Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF). The Pd nanocubes, with an average size of 12 nm, were synthesized and integrated with a DF, resulting in a highly robust SA with broadband saturable absorption characteristics. When incorporated into Er3+-doped laser cavities, the Pd-DF SA enabled the generation of ultrafast pulses with a central wavelength of 1560 nm, a corresponding repetition rate of 26.7 MHz, and a temporal width of 1.85 ps. Our findings highlight the strong potential of the Pd-DF device as a versatile SA for constructing high-energy ultrafast fiber lasers. Full article
(This article belongs to the Special Issue Nonlinear Optical Property and Sensing Applications of Nanomaterials)
Show Figures

Figure 1

17 pages, 4634 KiB  
Article
On the Synthesis of Graphene Oxide/Titanium Dioxide (GO/TiO2) Nanorods and Their Application as Saturable Absorbers for Passive Q-Switched Fiber Lasers
by Zain ul Abedin, Ajaz ul Haq, Rizwan Ahmed, Tahani A. Alrebdi, Ali M. Alshehri, Muhammad Irfan and Haroon Asghar
Nanomaterials 2024, 14(20), 1682; https://doi.org/10.3390/nano14201682 - 20 Oct 2024
Viewed by 1459
Abstract
We report passively Q-switched pulse operation through an erbium-doped fiber laser (EDFL) utilizing graphene oxide/titania (GO/TiO2) nanorods as a saturable absorber. The GO/TiO2 nanorods were fabricated using a Sol–gel-assisted hydrothermal method. The optical and physical characterization of the GO/TiO2 [...] Read more.
We report passively Q-switched pulse operation through an erbium-doped fiber laser (EDFL) utilizing graphene oxide/titania (GO/TiO2) nanorods as a saturable absorber. The GO/TiO2 nanorods were fabricated using a Sol–gel-assisted hydrothermal method. The optical and physical characterization of the GO/TiO2 was then characterized using a field-emission-scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and diffuses reflectance spectroscopy (DRS). To investigate the performance of the Q-switched EDFL based on the GO/TiO2 SA, the prepared nanorods were mechanically deposited on the fiber ferrule employing adhesion effects of in-dex-matching gel. This integration of the nanorod SA resulted in a self-starting Q-switching opera-tion initiated at a pump power of 17.5 mW and sustained up to 306.9 mW. When the pump range was tuned from 17.5 to 306.9 mW, the emission wavelength varied from 1564.2 to 1562.9 nm, pulse repetition rates increased from 13.87 kHz to 83.33 kHz, and pulse width decreased from 30.27 µs to 3.75 µs. Moreover, at the maximum pump power of 306.9 mW, the laser exhibited an average output power of 0.74 mW, a peak power of 1.54 mW, and a pulse energy of 8.88 nJ. Furthermore, this study investigates the GO/TiO2 damage threshold and prolonged stability of the proposed EDFL system. Full article
(This article belongs to the Special Issue Nonlinear Optical Property and Sensing Applications of Nanomaterials)
Show Figures

Figure 1

Back to TopTop