Nanostructured Materials in Gas Sensing Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: 30 May 2025 | Viewed by 8441

Special Issue Editor


E-Mail Website
Guest Editor
School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China
Interests: functional materials; gas sensors

Special Issue Information

Dear Colleagues,

Due to several advantages, a variety of nanomaterials have been studied for gas sensing applications, including nanoparticles, nanowires, nanotubes, and graphene. These materials have been functionalized with various chemical moieties to increase their sensitivity and selectivity for target gases. The resulting sensors have been shown to have low detection limits, fast response times, and high stability over extended periods of use. Additionally, the integration of nanomaterials with microelectronic devices has enabled the development of low-power and highly miniaturized gas sensors. This has paved the way for their use in portable and wearable devices for the real-time monitoring of environmental and industrial gases. This Special Issue aims to collect papers on sensor-based nanomaterials for the effective detection of various dangerous gases. Authors are invited to submit articles that focus on selective enhancement, low power consumption, fast responses, and other aspects. Papers on the characterization and evaluation of sensing performance or the completion of gas-sensitive mechanistic discussions of experimental phenomena are also welcome.

Prof. Dr. Dan Meng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gas sensors
  • nanomaterials
  • metal oxide- and carbon-based sensors
  • novel materials
  • leakage detection
  • low power consumption
  • sensitivity mechanism analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 12358 KiB  
Article
Oxygenated VOC Detection Using SnO2 Nanoparticles with Uniformly Dispersed Bi2O3
by Haoyue Yang, Koichi Suematsu, Felipe Hiroshi Mashiba, Ken Watanabe and Kengo Shimanoe
Nanomaterials 2024, 14(24), 2032; https://doi.org/10.3390/nano14242032 - 18 Dec 2024
Cited by 1 | Viewed by 561
Abstract
Bi2O3 particles are introduced as foreign additives onto SnO2 nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). Bi2O3-loaded SnO2 materials are prepared via the impregnation method followed by calcination [...] Read more.
Bi2O3 particles are introduced as foreign additives onto SnO2 nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). Bi2O3-loaded SnO2 materials are prepared via the impregnation method followed by calcination treatment. The abundant Bi2O3/SnO2 interfaces are constructed by the uniform dispersion of Bi2O3 particles on the SnO2 surface. The results of oxygen temperature-programmed desorption suggest that Bi2O3-loaded SnO2 samples display improved surface oxygen ions than neat-SnO2 NPs. As a result, the gas sensor based on 1 mol% Bi2O3-loaded SnO2 (1Bi-L-SnO2) composites shows significantly higher sensitivity and a faster response speed toward various oxygenated VOCs compared with SnO2, especially at 200 °C and 250 °C. The results of catalytic combustion and temperature-programmed reaction measurements reveal the dominant role of adsorption and partial oxidation during ethanol combustion on SnO2 and 1Bi-L-SnO2 surfaces. In this case, the improvement in the sensing performance of the 1Bi-L-SnO2 sensor can be associated with the increase in surface oxygen ions at Bi2O3/SnO2 interfaces. The results confirm the significant role of surface functionalization for sensing materials. The obtained outstanding sensing performance provides the potential application for the simultaneous detection of total oxygenated VOCs in practice. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Figure 1

15 pages, 3709 KiB  
Article
Palladium-Functionalized Nanostructured Nickel–Cobalt Oxide as Alternative Catalyst for Hydrogen Sensing Using Pellistors
by Olena Yurchenko, Mike Benkendorf, Patrick Diehle, Katrin Schmitt and Jürgen Wöllenstein
Nanomaterials 2024, 14(20), 1619; https://doi.org/10.3390/nano14201619 - 10 Oct 2024
Cited by 1 | Viewed by 3042
Abstract
To meet today’s requirements, new active catalysts with reduced noble metal content are needed for hydrogen sensing. A palladium-functionalized nanostructured Ni0.5Co2.5O4 catalyst with a total Pd content of 4.2 wt% was synthesized by coprecipitation to obtain catalysts with [...] Read more.
To meet today’s requirements, new active catalysts with reduced noble metal content are needed for hydrogen sensing. A palladium-functionalized nanostructured Ni0.5Co2.5O4 catalyst with a total Pd content of 4.2 wt% was synthesized by coprecipitation to obtain catalysts with an advantageous sheet-like morphology and surface defects. Due to the synthesis method and the reducible nature of Ni0.5Co2.5O4 enabling strong metal-metal oxide interactions, the palladium was highly distributed over the metal oxide surface, as determined using scanning transmission electron microscopy and energy-dispersive X-ray investigations. The catalyst tested in planar pellistor sensors showed high sensitivity to hydrogen in the concentration range below the lower flammability limit (LFL). At 400 °C and in dry air, a sensor response of 109 mV/10,000 ppm hydrogen (25% of LFL) was achieved. The sensor signal was 4.6-times higher than the signal of pristine Ni0.5Co2.5O4 (24.6 mV/10,000 ppm). Under humid conditions, the sensor responses were reduced by ~10% for Pd-functionalized Ni0.5Co2.5O4 and by ~27% for Ni0.5Co2.5O4. The different cross-sensitivities of both catalysts to water are attributed to different activation mechanisms of hydrogen. The combination of high sensor sensitivity to hydrogen and high signal stability over time, as well as low cross-sensitivity to humidity, make the catalyst promising for further development steps. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Figure 1

16 pages, 4979 KiB  
Article
In Situ Fabrication of SnS2/SnO2 Heterostructures for Boosting Formaldehyde−Sensing Properties at Room Temperature
by Dan Meng, Zongsheng Xie, Mingyue Wang, Juhua Xu, Xiaoguang San, Jian Qi, Yue Zhang, Guosheng Wang and Quan Jin
Nanomaterials 2023, 13(17), 2493; https://doi.org/10.3390/nano13172493 - 4 Sep 2023
Cited by 11 | Viewed by 1724
Abstract
Formaldehyde, as a harmful gas produced by materials used for decorative purposes, has a serious impact on human health, and is also the focus and difficulty of indoor environmental polution prevention; hence, designing and developing gas sensors for the selective measurement of formaldehyde [...] Read more.
Formaldehyde, as a harmful gas produced by materials used for decorative purposes, has a serious impact on human health, and is also the focus and difficulty of indoor environmental polution prevention; hence, designing and developing gas sensors for the selective measurement of formaldehyde at room temperature is an urgent task. Herein, a series of SnS2/SnO2 composites with hollow spherical structures were prepared by a facile hydrothermal approach for the purpose of formaldehyde sensing at room temperature. These novel hierarchical structured SnS2/SnO2 composites−based gas sensors demonstrate remarkable selectivity towards formaldehyde within the concentration range of sub-ppm (0.1 ppm) to ppm (10 ppm) at room temperature. Notably, the SnS2/SnO2−2 sensor exhibits an exceptional formaldehyde-sensing performance, featuring an ultra-high response (1.93, 0.1 ppm and 17.51, 10 ppm), as well as good repeatability, long-term stability, and an outstanding theoretical detection limit. The superior sensing capabilities of the SnS2/SnO2 composites can be attributed to multiple factors, including enhanced formaldehyde adsorption, larger specific surface area and porosity of the hollow structure, as well as the synergistic interfacial incorporation of the SnS2/SnO2 heterojunction. Overall, the excellent gas sensing performance of SnS2/SnO2 hollow spheres has opened up a new way for their detection of trace formaldehyde at room temperature. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Graphical abstract

Review

Jump to: Research

58 pages, 19582 KiB  
Review
Recent Advances of Graphene Quantum Dots in Chemiresistive Gas Sensors
by Xiaofeng Zhu, Yongzhen Li, Pei Cao, Peng Li, Xinzhu Xing, Yue Yu, Ruihua Guo and Hui Yang
Nanomaterials 2023, 13(21), 2880; https://doi.org/10.3390/nano13212880 - 30 Oct 2023
Cited by 3 | Viewed by 2517
Abstract
Graphene quantum dots (GQDs), as 0D graphene nanomaterials, have aroused increasing interest in chemiresistive gas sensors owing to their remarkable physicochemical properties and tunable electronic structures. Research on GQDs has been booming over the past decades, and a number of excellent review articles [...] Read more.
Graphene quantum dots (GQDs), as 0D graphene nanomaterials, have aroused increasing interest in chemiresistive gas sensors owing to their remarkable physicochemical properties and tunable electronic structures. Research on GQDs has been booming over the past decades, and a number of excellent review articles have been provided on various other sensing principles of GQDs, such as fluorescence-based ion-sensing, bio-sensing, bio-imaging, and electrochemical, photoelectrochemical, and electrochemiluminescence sensing, and therapeutic, energy and catalysis applications. However, so far, there is no single review article on the application of GQDs in the field of chemiresistive gas sensing. This is our primary inspiration for writing this review, with a focus on the chemiresistive gas sensors reported using GQD-based composites. In this review, the various synthesized strategies of GQDs and its composites, gas sensing enhancement mechanisms, and the resulting sensing characteristics are presented. Finally, the current challenges and future prospects of GQDs in the abovementioned application filed have been discussed for the more rational design of advanced GQDs-based gas-sensing materials and innovative gas sensors with novel functionalities. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Graphical abstract

Back to TopTop