Nonlinear Optics and Ultrafast Lasers in Nanosystems

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanophotonics Materials and Devices".

Deadline for manuscript submissions: 13 July 2025 | Viewed by 1399

Special Issue Editor


E-Mail Website
Guest Editor
School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi’an 710072, China.
Interests: ultra-fast pulse laser technology; nonlinear optics; nanoscale materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In nanosystems, nanomaterials exhibit excellent nonlinear optical properties due to the size effect, interface effect, and the interaction between ultrafast lasers and materials, which makes them an ideal choice for optical modulation, optical switching, and other functional devices. Ultrafast laser technology enables the fast and accurate observation and control of dynamic behaviors in nanosystems, and it is widely used in fields such as spectroscopic analysis, dynamics research, and ultrafast photonics in nanomaterials.

Despite significant progress, there are still many challenges in studying the nonlinear optical properties of nanomaterials. This Special Issue aims to showcase recent advances, unresolved issues, and cutting-edge results related to the innovative design and research progress of nonlinear optical nanomaterials. We encourage submissions of research and review articles that contribute to our understanding of this exciting and rapidly advancing field.

Dr. Jiang Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nonlinear optics
  • ultrafast lasers
  • nanomaterials
  • functional devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 5166 KiB  
Article
Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing
by Chen Li, Chao Fan, Hao Wu, Xxx Sedao and Jiang Wang
Nanomaterials 2025, 15(1), 60; https://doi.org/10.3390/nano15010060 - 2 Jan 2025
Viewed by 641
Abstract
This study presents a novel reflective fiber Fabry–Perot (F–P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. [...] Read more.
This study presents a novel reflective fiber Fabry–Perot (F–P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum. The dimensions and quality of the optical fiber are meticulously regulated through a combination of femtosecond laser cutting and chemical polishing, significantly enhancing the mechanical strength and sensitivity of the sensor’s overall structure. Experimental results indicate that the sensor achieves salinity sensitivity of 0.288 nm/% within a salinity range of 0% to 25%. Furthermore, the temperature sensitivity is measured at a minimal 0.015 nm/°C, allowing us to neglect temperature effects. The device is characterized by its compact size, straightforward structure, high mechanical robustness, ease of production, and excellent reproducibility. It demonstrates considerable potential for sensing applications in the domains of biomedicine and chemical engineering. Full article
(This article belongs to the Special Issue Nonlinear Optics and Ultrafast Lasers in Nanosystems)
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 7520 KiB  
Review
AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties
by Guansheng Xing and Bing Chen
Nanomaterials 2025, 15(2), 147; https://doi.org/10.3390/nano15020147 - 20 Jan 2025
Viewed by 516
Abstract
Silver gallium sulfide (AgGaS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS2 has gained considerable attention as a highly promising material for nonlinear optical [...] Read more.
Silver gallium sulfide (AgGaS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS2 has gained considerable attention as a highly promising material for nonlinear optical applications such as second harmonic generation and optical parametric oscillation. In attempts to expand the research scope, on the one hand, AgGaS2-derived bulk materials with similar diamond-like configurations have been investigated for the enhancement of nonlinear optics performance, especially the improvement of laser-induced damage thresholds and/or nonlinear coefficients; on the other hand, nanoscale AgGaS2 and its derivatives have been synthesized with sizes as low as the exciton Bohr radius for the realization of potential applications in the fields of optoelectronics and lighting. This review article focuses on recent advancements and future opportunities in the design of both bulk and nanocrystalline AgGaS2 and its derivatives, covering structural, electronic, and chemical aspects. By delving into the properties of AgGaS2 in bulk and nanocrystalline states, this review aims to deepen the understanding of chalcopyrite materials and maximize their utilization in photon conversion and beyond. Full article
(This article belongs to the Special Issue Nonlinear Optics and Ultrafast Lasers in Nanosystems)
Show Figures

Figure 1

Back to TopTop