nutrients-logo

Journal Browser

Journal Browser

The Efficacy and Role of Dietary Polyphenols

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Phytochemicals and Human Health".

Deadline for manuscript submissions: closed (15 February 2024) | Viewed by 43955

Special Issue Editor


grade E-Mail Website
Guest Editor
1. Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
2. Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
Interests: nutrition; health; disease prevention; dietary bioactive compounds; oxidative stress; aging; mitochondrial functionality; inflammation; bioenergetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the last several years, the importance of balanced dietary patterns in human health has been widely recognized. Dietary guidelines around the world recommend the increased consumption of fruits and vegetables, as good sources of dietary fiber, essential nutrients, and phytochemicals, to improve health and reduce the  risk of several chronic diseases, including metabolic disorder, diabetes, obesity, cardiovascular diseases, and some types of cancer. In this context, numerous studies have demonstrated the wide biological properties exerted by dietary phytochemicals, highlighting their beneficial role both in the prevention and in the treatment of several pathological conditions.

This Special Issue will include manuscripts, in the form of original research or review articles, that cover all aspects of the complex relationship between dietary polyphenols and human health, ranging from their bioavailability and gut microbiota interaction to the molecular mechanisms through which these compounds exert their health benefits. Studies with multidisciplinary input, offering new mechanisms or insights, are particularly welcome.

Dr. Francesca Giampieri
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutrition
  • human health
  • dietary intake
  • bioactive compounds
  • dietary phytochemicals
  • nutraceuticals
  • functional foods
  • medicinal products
  • natural antioxidants
  • nutrigenetics
  • nutrigenomics
  • bioavailability
  • pharmacodynamics and pharmacokinetics of polyphenols
  • gut microbiota
  • molecular mechanisms
  • safety and efficacy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 4357 KiB  
Article
Accelerating Effect of Cucurbita pepo L. Fruit Extract on Excisional Wound Healing in Depressed Rats Is Mediated through Its Anti-Inflammatory and Antioxidant Effects
by Hailah M. Almohaimeed, Maryam Hassan Al-Zahrani, Mohammed Saad Almuhayawi, Sami Awda Algaidi, Ashwaq H. Batawi, Hasan Ahmed Baz, Zuhair M. Mohammedsaleh, Nhal Ahmed Baz, Fayez M. Saleh and Nasra Ayuob
Nutrients 2022, 14(16), 3336; https://doi.org/10.3390/nu14163336 - 15 Aug 2022
Cited by 4 | Viewed by 2753
Abstract
Background: Chronic stress can hinder wound healing as it suppresses both the cellular and innate immune responses. Objectives: The study aims to assess the effectiveness of the administration of topical and oral Cucurbita pepo L. (CP) ethanolic extract in prompting excisional wound healing [...] Read more.
Background: Chronic stress can hinder wound healing as it suppresses both the cellular and innate immune responses. Objectives: The study aims to assess the effectiveness of the administration of topical and oral Cucurbita pepo L. (CP) ethanolic extract in prompting excisional wound healing in rats exposed to chronic stress, and to explain how it works. Materials and methods: Fifty albino rats assigned to five groups (n = 10) were utilized in this study. The chronic unpredictable mild stress (CUMS) model was used for 4 weeks to induce depressive-like behavior in rats, and a forced swim test and corticosterone were assessed to confirm its occurrence. During the experiment, an excisional wound was induced in the rats and followed. Oxidant/antioxidants status and pro-inflammatory cytokines levels were measured in the serum and wound area. Gene expression of pro-inflammatory cytokines was also assessed using RT-PCR. Wound closure histopathological changes and immunohistochemical expression of CD68, CD3, and CD4 at the wound area was assessed. Results: The administration of CP, both orally and topically, significantly reduced (p < 0.001) the depressive-like behavior and corticosterone and pro-inflammatory cytokines levels, while it significantly up-regulated the antioxidant activity compared to the untreated and topically CP-treated groups. Both topically CP-treated and combined CP-treated groups showed complete re-epithelialization, reduced inflammatory cells infiltration, collagen fibers deposition, and significantly increased CD3, CD4 positive T cells count, with a superior effect in the combined CP-treated groups. Conclusion: Cucurbita pepo L., administrated both topically and orally, can enhance the wound healing process in rats with depressive-like behavior mostly through the antioxidant, anti-inflammatory, and antidepressant activities observed in this study. Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

15 pages, 1228 KiB  
Article
Curcumin Offers No Additional Benefit to Lifestyle Intervention on Cardiometabolic Status in Patients with Non-Alcoholic Fatty Liver Disease
by Kaveh Naseri, Saeede Saadati, Zahra Yari, Behzad Askari, Davood Mafi, Pooria Hoseinian, Omid Asbaghi, Azita Hekmatdoost and Barbora de Courten
Nutrients 2022, 14(15), 3224; https://doi.org/10.3390/nu14153224 - 6 Aug 2022
Cited by 8 | Viewed by 4640
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with non-alcoholic fatty liver disease (NAFLD). Curcumin has been shown to exert glucose-lowering and anti-atherosclerotic effects in type 2 diabetes. Hence, we investigated curcumin’s effects on atherogenesis markers, fatty liver, insulin resistance, [...] Read more.
Cardiovascular disease (CVD) is the leading cause of death in patients with non-alcoholic fatty liver disease (NAFLD). Curcumin has been shown to exert glucose-lowering and anti-atherosclerotic effects in type 2 diabetes. Hence, we investigated curcumin’s effects on atherogenesis markers, fatty liver, insulin resistance, and adipose tissue-related indicators in patients with NAFLD. In this secondary analysis of a 12-week randomized controlled trial, fifty-two patients with NAFLD received lifestyle modification. In addition, they were randomly allocated to either the curcumin group (1.5 g/day) or the matching placebo. Outcome variables (assessed before and after the study) were: the fatty liver index (FLI), hepatic steatosis index (HSI), fatty liver score (FLS), BMI, age, ALT, TG score (BAAT), triglyceride glucose (TyG) index, Castelli risk index-I (CRI-I), Castelli risk index-II (CRI-II), TG/HDL–C ratio, atherogenic coefficient (AC), atherogenic index of plasma (AIP), lipoprotein combine index (LCI), cholesterol index (CHOLINDEX), lipid accumulation product (LAP), body adiposity index (BAI), visceral adiposity index (VAI), metabolic score for visceral fat (METS-VF), visceral adipose tissue (VAT), and waist-to-height ratio (WHtR) values. The TyG index decreased in the curcumin group and increased in the placebo group, with a significant difference between the groups (p = 0.029). However, a between-group change was not significant after adjustment for multiple testing. Other indices were not significantly different between the groups either before or after multiple test correction. After the intervention, there was a lower number of patients with severe fatty liver (FLI ≥ 60) and metabolic syndrome in the curcumin group compared to the placebo (p = 0.021 and p = 0.012, respectively). In conclusion, curcumin offers no additional cardiometabolic benefits to lifestyle intervention in patients with NAFLD. Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

13 pages, 2835 KiB  
Article
Defining the Cholesterol Lowering Mechanism of Bergamot (Citrus bergamia) Extract in HepG2 and Caco-2 Cells
by Yunying Huang, Restituto Tocmo, Mirielle C. Nauman, Monica A. Haughan and Jeremy J. Johnson
Nutrients 2021, 13(9), 3156; https://doi.org/10.3390/nu13093156 - 10 Sep 2021
Cited by 16 | Viewed by 6300
Abstract
Bergamot, a Mediterranean citrus fruit native to southern Italy, has been reported to have cholesterol-lowering properties; however, the mechanism of action is not well understood. Due to structural similarities with 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitors, it has been proposed that the phenolic compounds [...] Read more.
Bergamot, a Mediterranean citrus fruit native to southern Italy, has been reported to have cholesterol-lowering properties; however, the mechanism of action is not well understood. Due to structural similarities with 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitors, it has been proposed that the phenolic compounds in bergamot may also inhibit HMGCR. Statins are widely used for their cholesterol-lowering properties; however, they are not universally well tolerated, suggesting there is a need to identify novel cholesterol-lowering strategies. In the present study, we investigated bergamot fruit extract (BFE) and its principal components (neoeriocitrin, naringin, neohesperidin, melitidin, and brutieridin) for their ability to regulate cholesterol levels in HepG2 and Caco-2 cells. BFE at increasing concentrations decreased the levels of total and free cholesterol in HepG2 cells. BFE and its constituents did not directly inhibit HMGCR activity. However, BFE and neohesperidin decreased HMGCR levels in HepG2 cells, suggesting that neohesperidin and BFE may downregulate HMGCR expression. An increase in AMP-kinase phosphorylation was observed in BFE and neohesperidin-treated cells. In Caco-2 cells, brutieridin exhibited a significant reduction in cholesterol uptake and decreased the level of Niemann-Pick C1 Like 1, an important cholesterol transporter. Taken together, our data suggest that the cholesterol-lowering activity of bergamot is distinct from statins. We hypothesize that BFE and its principal constituents lower cholesterol by inhibiting cholesterol synthesis and absorption. Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

17 pages, 2237 KiB  
Article
The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols
by Anat Yaskolka Meir, Kieran Tuohy, Martin von Bergen, Rosa Krajmalnik-Brown, Uwe Heinig, Hila Zelicha, Gal Tsaban, Ehud Rinott, Alon Kaplan, Asaph Aharoni, Lydia Zeibich, Debbie Chang, Blake Dirks, Camilla Diotallevi, Panagiotis Arapitsas, Urska Vrhovsek, Uta Ceglarek, Sven-Bastiaan Haange, Ulrike Rolle-Kampczyk, Beatrice Engelmann, Miri Lapidot, Monica Colt, Qi Sun and Iris Shaiadd Show full author list remove Hide full author list
Nutrients 2021, 13(6), 1866; https://doi.org/10.3390/nu13061866 - 30 May 2021
Cited by 20 | Viewed by 7866
Abstract
Background: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa ‘Mankai’, a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical [...] Read more.
Background: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa ‘Mankai’, a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. Methods: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. Results: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. Conclusions: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis. Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

15 pages, 641 KiB  
Article
Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats?
by Monika Kurpik, Przemysław Zalewski, Małgorzata Kujawska, Małgorzata Ewertowska, Ewa Ignatowicz, Judyta Cielecka-Piontek and Jadwiga Jodynis-Liebert
Nutrients 2021, 13(4), 1050; https://doi.org/10.3390/nu13041050 - 24 Mar 2021
Cited by 5 | Viewed by 4275
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, [...] Read more.
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity. Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 2436 KiB  
Review
Variability in the Beneficial Effects of Phenolic Compounds: A Review
by Itziar Eseberri, Jenifer Trepiana, Asier Léniz, Iker Gómez-García, Helen Carr-Ugarte, Marcela González and María P. Portillo
Nutrients 2022, 14(9), 1925; https://doi.org/10.3390/nu14091925 - 4 May 2022
Cited by 45 | Viewed by 4414
Abstract
When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or [...] Read more.
When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or lesser bioaccessibility, defined as the amount available for absorption in the intestine after digestion, and a certain bioavailability, defined as the proportion of the molecule that is available after digestion, absorption and metabolism. Among the external factors that modify the content of phenolic compounds in food are the variety, the cultivation technique and the climate. Regarding functional foods, it is important to take into account the role of the selected food matrix, such as dairy matrices, liquid or solid matrices. It is also essential to consider the interactions between phenolic compounds as well as the interplay that occurs between these and several other components of the diet (macro- and micronutrients) at absorption, metabolism and mechanism of action levels. Furthermore, there is a great inter-individual variability in terms of phase II metabolism of these compounds, composition of the microbiota, and metabolic state or metabotype to which the subject belongs. All these factors introduce variability in the responses observed after ingestion of foods or nutraceuticals containing phenolic compounds. Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

14 pages, 2119 KiB  
Review
Health-Promoting of Polysaccharides Extracted from Ganoderma lucidum
by Ewa Seweryn, Anna Ziała and Andrzej Gamian
Nutrients 2021, 13(8), 2725; https://doi.org/10.3390/nu13082725 - 7 Aug 2021
Cited by 91 | Viewed by 11699
Abstract
Medicinal mushrooms are rich sources of pharmacologically active compounds. One of the mushrooms commonly used in traditional Chinese medicine is Ganoderma lucidum (Leyss. Ex Fr.) Karst. In Asian countries it is treated as a nutraceutical, whose regular consumption provides vitality and improves health. [...] Read more.
Medicinal mushrooms are rich sources of pharmacologically active compounds. One of the mushrooms commonly used in traditional Chinese medicine is Ganoderma lucidum (Leyss. Ex Fr.) Karst. In Asian countries it is treated as a nutraceutical, whose regular consumption provides vitality and improves health. Ganoderma lucidum is an important source of biologically active compounds. The pharmacologically active fraction of polysaccharides has antioxidant, immunomodulatory, antineurodegenerative and antidiabetic activities. In this review, we summarize the activity of Ganoderma lucidum polysaccharides (GLP). Full article
(This article belongs to the Special Issue The Efficacy and Role of Dietary Polyphenols)
Show Figures

Figure 1

Back to TopTop