Antiradical, Chemopreventive and Antimicrobial Analysis of Bioactive Substances

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: closed (15 May 2022) | Viewed by 36481

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Department of Pharmacognosy with the Medicinal Plant Garden, Faculty of Pharmacy, Medical University of Lublin, Collegium Universum, 1 Chodźki Street, 20-093 Lublin, Poland
Interests: phytochemistry; phytotherapy; phytochemical analysis; biological and pharmacological effects of plant constituents
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hundreds of new scientific data are published each year on biologically active substances that demonstrate antibiodegenerative properties by inactivating reactive oxygen species, inhibiting carcinogenesis or displaying a broad spectrum of antimicrobial properties. Many of them are compounds of natural origin found in herbal substances that have been used for thousands of years in traditional medicine systems of China, India, South America and elsewhere. Currently, a wide range of various plant constituents with antioxidant properties are used in the prevention and treatment of various age-related inflammatory diseases, characterised by progressive neurodegeneration (dementia), oxidative damage to blood vessels (atherosclerosis), metabolic disorders (metabolic syndrome, diabetes, obesity), and the promotion of some neoplastic processes. Furthermore, a very big problem and challenge for the medical community is also the progressive resistance of pathogenic microorganisms to conventional antimicrobial drugs. Therefore, new biomolecules are being sought, including plant polyphenols, which could be used to combat invading and resistant bacteria, fungi and viruses.

As a guest editor, I invite you to contribute your latest research findings or updated reviews to this Special Issue focused on various aspects of the isolation of new constituents of natural origin, as well as obtaining herbal preparations (including plant extracts), and performing chemical and/or biomedical studies in terms of their antioxidant, chemopreventive and antimicrobial properties.

Dr. Grażyna Zgórka
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antioxidants
  • chemopreventive agents
  • antimicrobials
  • plant biomolecules
  • herbal medicinal products
  • phytochemical analysis
  • preclinical studies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1857 KiB  
Article
Inhibition of NLRP3 by Fermented Quercetin Decreases Resistin-Induced Chemoresistance to 5-Fluorouracil in Human Colorectal Cancer Cells
by Ko-Chao Lee, Kuen-Lin Wu, Chia-Kung Yen, Shun-Fu Chang, Cheng-Nan Chen and Ying-Chen Lu
Pharmaceuticals 2022, 15(7), 798; https://doi.org/10.3390/ph15070798 - 27 Jun 2022
Cited by 16 | Viewed by 2395
Abstract
The drug resistance of colorectal cancer (CRC) cells against 5-fluorouracil (5-FU) therapy is a major challenge to successful cancer treatment. While previous studies have proposed several 5-FU resistance mechanisms, the effects of the adipokines on cancer cells remain unclear. Thus, this study investigated [...] Read more.
The drug resistance of colorectal cancer (CRC) cells against 5-fluorouracil (5-FU) therapy is a major challenge to successful cancer treatment. While previous studies have proposed several 5-FU resistance mechanisms, the effects of the adipokines on cancer cells remain unclear. Thus, this study investigated the effect of resistin on 5-FU-treated CRC cell lines. The upregulation of NLRP3 can regulate the inflammatory responses in cancer cells and then enhance cancer progression. This study investigated the expression level and the function of NLRP3 on 5-FU-induced cytotoxicity in CRC cells and found that resistin-induced ERK activation and increased NLRP3 expression in CRC HCT-116 and DLD-1 cells were mediated by Toll-like receptor 4 (TLR4). The inhibition of TLR4 and ERK by pharmacological inhibitors attenuated the resistin-induced NLRP3 mRNA and protein levels. In contrast, the knockdown of NLRP3 enhanced the cytotoxic effects of 5-FU. Furthermore, quercetin is an effective chemopreventive compound. This study showed that quercetin fermented by Lactobacillus could exhibit low cytotoxicity on normal mucosa cells and improve the function of inhibiting CRC cells. The treatment of CRC cells with fermented quercetin increased the cytotoxicity and enhanced cell death in the presence of resistin. In this study, fermented quercetin induced the cytotoxicity and cell death of 5-FU in resistin-treated CRC cells, which is associated with the downregulation of NLRP3 expression and ERK phosphorylation. These results indicate the role of NLRP3 in the development of drug resistance to 5-FU in CRC cells. Elucidating the mechanism regarding the cytotoxicity effect of quercetin may provide another vision for the development of a chemotherapy strategy for CRC in the future. Full article
Show Figures

Figure 1

18 pages, 2978 KiB  
Article
In Vitro Evaluation of the Antioxidant Activity and Chemopreventive Potential in Human Breast Cancer Cell Lines of the Standardized Extract Obtained from the Aerial Parts of Zigzag Clover (Trifolium medium L.)
by Grażyna Zgórka, Magdalena Maciejewska-Turska, Anna Makuch-Kocka and Tomasz Plech
Pharmaceuticals 2022, 15(6), 699; https://doi.org/10.3390/ph15060699 - 2 Jun 2022
Cited by 5 | Viewed by 2812
Abstract
The aboveground parts of Trifolium medium L. (zigzag clover), a little-known representative of the family Fabaceae, collected during flowering in a wild stand (Sławin-Szerokie district, Lublin, Poland), were used in this study. Our previous investigations confirmed the higher content of phytoestrogenic isoflavones (especially [...] Read more.
The aboveground parts of Trifolium medium L. (zigzag clover), a little-known representative of the family Fabaceae, collected during flowering in a wild stand (Sławin-Szerokie district, Lublin, Poland), were used in this study. Our previous investigations confirmed the higher content of phytoestrogenic isoflavones (especially biochanin A and formononetin derivatives) in T. medium compared to the closely related medicinal plant T. pratense (red clover) and the involvement of these compounds in anti-osteoporotic effects in ovariectomized female rats. The current study focused on evaluating other antibiodegenerative (antioxidant, chemopreventive, and cytostatic) effects for the lyophilisate (TML) obtained from wild zigzag clover. For this purpose, efficient ultrasound-assisted extraction (UAE) was employed, followed by vacuum drying and phytochemical standardization using a newly developed reversed-phase high-performance liquid chromatography (RP-LC) coupled with a PDA detection. Malonylglycosides of biochanin A and formononetin were the predominant compounds and were found to contribute more than 54% to the total isoflavone content determined in the standardized extract of zigzag clover. The antioxidant potential of TML was examined in vitro using the Folin–Ciocalteu and cupric ion-reducing (CUPRAC) methods in addition to the free radical (DPPH and ABTS•+) scavenging assays. The cytotoxic effects of TML, formononetin, and ononin were evaluated on MCF-7 (estrogen-dependent) and MDA-MB-231 (estrogen-independent) human breast cancer cell lines using the MTT assay. The important role of malonyl isoflavone derivatives has been indicated both in chemoprevention and potential cytotoxic effects of TML against certain types of breast cancer. Full article
Show Figures

Figure 1

12 pages, 1733 KiB  
Communication
Two New Fatty Acid Derivatives, Omphalotols A and B and Anti-Helicobacter pylori Fatty Acid Derivatives from Poisonous Mushroom Omphalotus japonicus
by Seulah Lee, Tae Wan Kim, Yong Hoon Lee, Dong-Min Kang, Rhim Ryoo, Yoon-Joo Ko, Mi-Jeong Ahn and Ki Hyun Kim
Pharmaceuticals 2022, 15(2), 139; https://doi.org/10.3390/ph15020139 - 25 Jan 2022
Cited by 4 | Viewed by 2943
Abstract
As part of ongoing systematic research into the discovery of bioactive secondary metabolites with novel structures from Korean wild mushrooms, we investigated secondary metabolites from a poisonous mushroom, Omphalotus japonicus (Kawam.) Kirchm. & O. K. Mill. belonging to the family Marasmiaceae, which causes [...] Read more.
As part of ongoing systematic research into the discovery of bioactive secondary metabolites with novel structures from Korean wild mushrooms, we investigated secondary metabolites from a poisonous mushroom, Omphalotus japonicus (Kawam.) Kirchm. & O. K. Mill. belonging to the family Marasmiaceae, which causes nausea and vomiting after consumption. The methanolic extract of O. japonicus fruiting bodies was subjected to the fractionation by solvent partition, and the CH2Cl2 fraction was analyzed for the isolation of bioactive compounds, aided by an untargeted liquid chromatography mass spectrometry (LC–MS)-based analysis. Through chemical analysis, five fatty acid derivatives (15), including two new fatty acid derivatives, omphalotols A and B (1 and 2), were isolated from the CH2Cl2 fraction, and the chemical structures of the new compounds were determined using 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and high resolution electrospray ionization mass spectrometry (HR-ESIMS), as well as fragmentation patterns in MS/MS data and chemical reactions followed by the application of Snatzke’s method and competing enantioselective acylation (CEA). In the anti-Helicobacter pylori activity test, compound 1 showed moderate antibacterial activity against H. pylori strain 51 with 27.4% inhibition, comparable to that of quercetin as a positive control. Specifically, compound 3 exhibited the most significant antibacterial activity against H. pylori strain 51, with MIC50 and MIC90 values of 9 and 20 μM, respectively, which is stronger inhibitory activity than that of another positive control, metronidazole (MIC50 = 17 μM and MIC90 = 46 μM). These findings suggested the experimental evidence that the compound 3, an α,β-unsaturated ketone derivative, could be used as a moiety in the development of novel antibiotics against H. pylori. Full article
Show Figures

Graphical abstract

15 pages, 3039 KiB  
Article
In Silico-Based Discovery of Natural Anthraquinones with Potential against Multidrug-Resistant E. coli
by Hani A. Alhadrami, Wesam H. Abdulaal, Hossam M. Hassan, Nabil A. Alhakamy and Ahmed M. Sayed
Pharmaceuticals 2022, 15(1), 86; https://doi.org/10.3390/ph15010086 - 11 Jan 2022
Cited by 11 | Viewed by 3037
Abstract
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, [...] Read more.
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli’s Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < −10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli’s Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains. Full article
Show Figures

Figure 1

17 pages, 2622 KiB  
Article
Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia)
by Łukasz Świątek, Elwira Sieniawska, Mohamad Fawzi Mahomoodally, Nabeelah Bibi Sadeer, Krzysztof Kamil Wojtanowski, Barbara Rajtar, Małgorzata Polz-Dacewicz, Mehmet Yavuz Paksoy and Gokhan Zengin
Pharmaceuticals 2022, 15(1), 50; https://doi.org/10.3390/ph15010050 - 30 Dec 2021
Cited by 9 | Viewed by 3040
Abstract
This study presents the evaluation of biological activities and chemical profiling of Oenanthe aquatica (L.) Poir. and Oenanthe silaifolia M. Bieb. The phytochemical profile, antioxidant, enzyme inhibitory, cytotoxic and antiviral activities of the methanolic and aqueous extracts were investigated. The aqueous extract of [...] Read more.
This study presents the evaluation of biological activities and chemical profiling of Oenanthe aquatica (L.) Poir. and Oenanthe silaifolia M. Bieb. The phytochemical profile, antioxidant, enzyme inhibitory, cytotoxic and antiviral activities of the methanolic and aqueous extracts were investigated. The aqueous extract of O. aquatica possessing the highest content of phenolics (60.85 mg gallic acid equivalent/g extract), also exhibited the strongest radical scavenging potential against 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (79.46 and 148.66 mg Trolox equivalent/g extract, respectively), the highest reducing ability (207.59 and 107.27 mg Trolox equivalent/g extract, for cupric reducing antioxidant capacity and ferric reducing antioxidant activity, respectively), metal chelating potential (33.91 mg ethylenediaminetetraacetic acid equivalent/g extract) and total antioxidant ability (1.60 mmol Trolox equivalent/g extract). Liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) permitted tentative identification of compounds from simple organic acids, phenolic acids, coumarins, flavonoids and their glycosides in O. aquatica and O. silaifolia extracts. The methanolic extract of O. aquatica substantially depressed acetylcholinesterase (3.67 mg galantamine equivalent/g extract), tyrosinase (126.66 mg kojic acid equivalent/g extract), and α-amylase (0.83 mmol acarbose equivalent/g extract) enzymes. The methanolic extract of O. silaifolia showed highest enzymatic inhibitory property against butyrylcholinesterase, and its aqueous extract depressed α-glucosidase activity (0.26 mmol acarbose equivalent/g extract). All tested extracts exerted selective toxicity towards cancer cell lines, and the highest anticancer potential was found for O. aquatica aqueous extract on FaDu and HeLa cells with CC50 of 57.36 and 47.16 µg/mL, respectively. Significant antiviral activity against HSV-1 (HHV-1) was found for both aqueous extracts in concentrations of 1000 µg/mL, which inhibited the HSV-1 cytopathic effect (CPE) in virus infected VERO cells and reduced the virus infective titer by more than 3 log (logCCID50/mL). This study has produced critical scientific data on O. aquatica and O. silaifolia, which are potential contenders for the development of novel phyto-pharmaceuticals. Full article
Show Figures

Figure 1

17 pages, 3342 KiB  
Article
Bioactivity Potential of Aesculus hippocastanum L. Flower: Phytochemical Profile, Antiradical Capacity and Protective Effects on Human Plasma Components under Oxidative/Nitrative Stress In Vitro
by Aleksandra Owczarek, Joanna Kołodziejczyk-Czepas, Paulina Marczuk, Julia Siwek, Katarzyna Wąsowicz and Monika Anna Olszewska
Pharmaceuticals 2021, 14(12), 1301; https://doi.org/10.3390/ph14121301 - 14 Dec 2021
Cited by 7 | Viewed by 2984
Abstract
Horse chestnut (Aesculus hippocastanum) flower is a traditional medicine applied to alleviate symptoms of chronic venous insufficiency (CVI). However, its flavonoid-based composition has not been sufficiently recognized, and the data supporting its traditional application are lacking. In the work, 43 constituents [...] Read more.
Horse chestnut (Aesculus hippocastanum) flower is a traditional medicine applied to alleviate symptoms of chronic venous insufficiency (CVI). However, its flavonoid-based composition has not been sufficiently recognized, and the data supporting its traditional application are lacking. In the work, 43 constituents were detected by UHPLC–PDA–ESI–TQ–MS/MS (flavonoids, phenolic acids, flavanols, and coumarins), including 31 reported in the flower for the first time. The quantitative HPLC–PDA study (developed and validated for quality control purposes) indicated the fractionated extraction as an efficient method for enhancing the total polyphenol content (TPHC) in the extracts (up to 414.06 mg/g) and kaempferol glycosides as their dominant constituents (75.05–82.14% TPHC). The activity studies showed significant scavenging properties of the extracts and their constituents towards reactive oxygen species (especially against highly reactive hydroxyl radical, with capacities up to 7.85 mmol ascorbic acid equivalents/g). Moreover, the analytes relevantly protected human plasma biomolecules from peroxynitrite-induced oxidative/nitrative damage; at 1–50 µg/mL, they hindered the protein nitration and lipid peroxidation, decreasing the levels of 3-nitrotyrosine (by up to 50%) and thiobarbituric acid reactive substances (by up to 70%), respectively. The extracts also averted the depletion of plasma thiols (by up to 67%) and improved the non-enzymatic antioxidant capacity of plasma. The demonstrated mechanisms might be partly responsible for the efficacy of the flower in CVI. Additionally, the anti-aggregatory and anticoagulant properties of the extracts were found only mild or negligible, which suggests that they may be safely applied with drugs impacting the coagulation process. Full article
Show Figures

Figure 1

15 pages, 2867 KiB  
Article
A Comparative Survey of Anti-Melanoma and Anti-Inflammatory Potential of Usnic Acid Enantiomers—A Comprehensive In Vitro Approach
by Agnieszka Galanty, Paweł Zagrodzki, Joanna Gdula-Argasińska, Karolina Grabowska, Paulina Koczurkiewicz-Adamczyk, Dagmara Wróbel-Biedrawa, Irma Podolak, Elżbieta Pękala and Paweł Paśko
Pharmaceuticals 2021, 14(9), 945; https://doi.org/10.3390/ph14090945 - 21 Sep 2021
Cited by 14 | Viewed by 2751
Abstract
Usnic acid (UA) is a chiral lichen metabolite with an interesting pharmacological profile. The aim of this study was to compare the anti-melanoma effect of (+)-UA and (−)-UA in an in vitro model by studying their impact on the cells as well as [...] Read more.
Usnic acid (UA) is a chiral lichen metabolite with an interesting pharmacological profile. The aim of this study was to compare the anti-melanoma effect of (+)-UA and (−)-UA in an in vitro model by studying their impact on the cells as well as the processes associated with cancer progression. The effect of UA enantiomers on the viability, proliferation, and invasive potential of three melanoma cell lines (HTB140, A375, WM793) was evaluated. Their interaction with a chemotherapeutic drug—doxorubicin was assessed by isobolographic analysis. Anti-inflammatory and anti-tyrosinase properties of (+)-UA and (−)-UA were also examined. Both UA enantiomers dose- and time-dependently decreased the viability of all three melanoma cell lines. Their synergistic effect with doxorubicin was observed on A375 cells. (+)-Usnic acid at a sub-cytotoxic dose strongly inhibited melanoma cells migration. Both UA enantiomers decreased the release of pro-inflammatory mediators. The cytotoxic effect of (+)-UA and (−)-UA depends greatly on the melanoma cell type; however, the overall anti-melanoma potential is perspective. Our results indicate that the strategy of combining usnic acid enantiomers with cytostatic drugs may be an interesting option to consider in combating melanoma; however, further studies are required. Full article
Show Figures

Figure 1

14 pages, 630 KiB  
Article
Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient
by Maria Antónia Nunes, Josman Dantas Palmeira, Diana Melo, Susana Machado, Joana Correia Lobo, Anabela Sílvia Guedes Costa, Rita Carneiro Alves, Helena Ferreira and Maria Beatriz Prior Pinto Oliveira
Pharmaceuticals 2021, 14(9), 913; https://doi.org/10.3390/ph14090913 - 10 Sep 2021
Cited by 37 | Viewed by 4179
Abstract
Olive pomace, an olive oil processing byproduct, can be upcycled and meet the current demand for natural and sustainable food ingredients. In this work, a patented process was used to obtain a functional ingredient from different olive pomaces. The nutritional, chemical and antioxidant [...] Read more.
Olive pomace, an olive oil processing byproduct, can be upcycled and meet the current demand for natural and sustainable food ingredients. In this work, a patented process was used to obtain a functional ingredient from different olive pomaces. The nutritional, chemical and antioxidant profiles, as well as the antimicrobial activity against S. aureus, E. coli and C. albicans, were investigated for the first time. The amount of phenolics ranged between 3.1 and 3.8 g gallic acid eq./100 g in all samples and flavonoids between 2.0 and 3.2 g catechin eq/100 g. No significant differences were found regarding the antioxidant activity. The total fat varied between 5 and 11%, α-tocopherol being the major vitamer and oleic acid the main fatty acid. The protein and ash contents were 1–4% and 10–17%, respectively. The functional ingredient with a higher hydroxytyrosol content (220 mg/100 g) also presented the best minimal inhibitory concentration against the tested bacteria. No activity against C. albicans was verified. This new functional ingredient presents the potential to be used as a natural preservative or as a nutritional profile enhancer. Moreover, it can be an advantageous ingredient in food products, since it comprises specific lipid and hydrophilic bioactive compounds usually not present in other plant extracts. Full article
Show Figures

Graphical abstract

13 pages, 663 KiB  
Article
Solvent-Free Microwave Extraction of Thymus mastichina Essential Oil: Influence on Their Chemical Composition and on the Antioxidant and Antimicrobial Activities
by André R. T. S. Araujo, Sandrine Périno, Xavier Fernandez, Cassandra Cunha, Márcio Rodrigues, Maximiano P. Ribeiro, Luisa Jordao, Lúcia A. Silva, Jesus Rodilla, Paula Coutinho and Farid Chemat
Pharmaceuticals 2021, 14(8), 709; https://doi.org/10.3390/ph14080709 - 22 Jul 2021
Cited by 19 | Viewed by 4410
Abstract
Solvent-free microwave extraction (SFME) is a combination of microwave heating and dry distillation performed at atmospheric pressure without the addition of water or organic solvents that has been proposed as a green method for the extraction of essential oils from aromatic and medicinal [...] Read more.
Solvent-free microwave extraction (SFME) is a combination of microwave heating and dry distillation performed at atmospheric pressure without the addition of water or organic solvents that has been proposed as a green method for the extraction of essential oils from aromatic and medicinal herbs. In this work, SFME and the conventional techniques of steam distillation (SD) and hydrodistillation (HD) were compared with respect to the extraction and antioxidant and antimicrobial activities of Thymus mastichina essential oil. The main constituent of essential oils obtained using different methods was 1,8-cineole (eucalyptol). The results showed that the essential oils extracted by means of SFME in 30 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained using conventional HD over 120 min. In addition, SFME generates less waste and less solvent, consumes less energy, and provides a higher yield for a shorter extraction time, which is advantageous for the extraction of the T. mastichina essential oil compared to SD. The antioxidant and antimicrobial activities of the T. mastichina essential oil obtained from either SFME or conventional extraction methods (SD or HD) showed a similar pattern. Large-scale experiments using this SFME procedure showed a potential industrial application. Full article
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 2649 KiB  
Review
Potential Therapeutic Effects of Citrus hystrix DC and Its Bioactive Compounds on Metabolic Disorders
by Hawa Nordin Siti, Suhaila Mohamed and Yusof Kamisah
Pharmaceuticals 2022, 15(2), 167; https://doi.org/10.3390/ph15020167 - 29 Jan 2022
Cited by 21 | Viewed by 6184
Abstract
Metabolic disorders like diabetes mellitus, hypertension, dyslipidemia, and obesity are major medical problems globally. The incidence of these disorders has increased tremendously in recent years. Studies have demonstrated that plants with antioxidant and anti-inflammatory properties have beneficial effects on these disorders. One of [...] Read more.
Metabolic disorders like diabetes mellitus, hypertension, dyslipidemia, and obesity are major medical problems globally. The incidence of these disorders has increased tremendously in recent years. Studies have demonstrated that plants with antioxidant and anti-inflammatory properties have beneficial effects on these disorders. One of these plants is Citrus hystrix DC, commonly known as kaffir lime. This review aims to present updates on the progress of research regarding the use of C. hystrix in metabolic disorders. Phytochemical compounds, including β-pinene, sabinene, citronellal, and citronellol, have been detected in the plant; and its extract exhibited potential antidiabetic, antihyperlipidemic and anti-obesity activity, as well as prevention of development of hypertension. These beneficial properties may be attributable to the presence of bioactive compounds which have therapeutic potential in treating these metabolic disorders. The compounds have the potential to be developed as candidate drugs. This review will assist in validating the regulatory role of the extract and its bioactive compounds on metabolic disorders, thus expediting future research in the area. Full article
Show Figures

Figure 1

Back to TopTop