Gut Microbiota Modulation: Probiotics, Postbiotics and other Bioactive Compounds

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: closed (25 September 2024) | Viewed by 25543

Special Issue Editors


E-Mail Website
Guest Editor
Centro de Apoio Tecnológico Agro Alimentar (CATAA) de Castelo Branco, 6000-459 Castelo Branco, Portugal
Interests: gut microbiota; immune system; nutrition respiratory health

E-Mail Website
Guest Editor
CATAA - Centro de Apoio Tecnológico Agro-Alimentar – Agrofood Technological Center, 6000-459 Castelo Branco, Portugal
Interests: Research on the field of food and nutrition, including the effect of natural food probiotics on gut health and homeostasis, antimicrobial properties of natural products, and new sustainable technologies for food conservation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, gut microbiota has been intensively explored at various levels. With the advent of multi-omics techniques such as metagenomics and metatranscriptomics, the structure and function of the microbiota have begun to be understood. Given that 70–80% of immune cells are found in the gut, it is clear what a major impact this “super organ” has on health.

Strategies to promote a “good” microbial community turn out to be crucial for a fine-tuned symbiotic relationship with the host, contributing to the prevention of disease occurrence and to the management of diseases that are usually correlated with dysbiosis states, as already observed in metabolic and respiratory disorders, among others.

Probiotics can be cost-effective in preventing and managing some diseases; however, it is usually very difficult to provide experimental evidence for health claims on probiotics as there are many variables to consider, such as specific species, strain, dose or duration of treatment, and host individual responses. There is still uncertainty about whether living probiotic strains are able to colonize and function in the human tract as some people appear to be more resistant to colonization.

Alternatively, the use of standardized doses of certain purified inactivated microbial cells or cell components, microbial metabolites and bioactive compounds generated by fermentation/enzyme hydrolyses, administered alone, have been recently suggested to modulate the gut microbiota and impact host health and disease.

Topics to be covered within this Special Issue include (but are not limited to):

  • Novel probiotic strains;
  • Influence of probiotics and/or bioactive compounds on gut microbiota modulation;
  • Influence of probiotics and/or bioactive compounds in health and disease states;
  • Signaling pathways mediating probiotics-host effects;
  • Safety and regulations for the use of probiotics;
  • Bioactive compounds able to modulate the gut microbiota and generated by fermentation/enzyme hydrolyses or food processing methods.

Contributions of original research to review articles are welcome.

Dr. Inês Brandão
Dr. Christophe Ruis Espírito Santo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gut microbiota
  • bioactive compounds
  • immune system
  • nutrition respiratory health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 2773 KiB  
Article
Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment
by Kwon Il Han, Hyun-Dong Shin, Yura Lee, Sunhwa Baek, Eunjung Moon, Youn Bum Park, Junhui Cho, Jin-Ho Lee, Tack-Joong Kim and Ranjith Kumar Manoharan
Pharmaceuticals 2024, 17(10), 1383; https://doi.org/10.3390/ph17101383 - 17 Oct 2024
Viewed by 1067
Abstract
Background: Probiotics, which are live microorganisms that, when given in sufficient quantities, promote the host’s health, have drawn a lot of interest for their ability to enhance gut health. Enterococcus faecalis, a member of the human gut microbiota, has shown promise as [...] Read more.
Background: Probiotics, which are live microorganisms that, when given in sufficient quantities, promote the host’s health, have drawn a lot of interest for their ability to enhance gut health. Enterococcus faecalis, a member of the human gut microbiota, has shown promise as a probiotic candidate due to its functional attributes. However, safety concerns associated with certain strains warrant comprehensive evaluation before therapeutic application. Materials and Methods: In this study, E. faecalis EF-2001, originally isolated from fecal samples of a healthy human infant, was subjected to a multi-faceted assessment for its safety and probiotic potential. In silico analysis, CAZyme, biosynthetic, and stress-responsive proteins were identified. Results: The genome lacked biogenic amine genes but contained some essential amino acid and vitamin synthetic genes, and carbohydrate-related enzymes essential for probiotic properties. The negligible difference of 0.03% between the 1st and 25th generations indicates that the genetic information of the E. faecalis EF-2001 genome remained stable. The live E. faecalis EF-2001 (E. faecalis EF-2001L) demonstrated low or no virulence potential, minimal D-Lactate production, and susceptibility to most antibiotics except some aminoglycosides. No bile salt deconjugation or biogenic amine production was observed in an in vitro assay. Hemolytic activity assessment showed a β-hemolytic pattern, indicating no red blood cell lysis. Furthermore, the EF-2001L did not produce gelatinase and tolerated simulated gastric and intestinal fluids in an in vitro study. Similarly, heat-killed E. faecalis EF-2001 (E. faecalis EF-2001HK) exhibits tolerance in both acid and base conditions in vitro. Further, no cytotoxicity of postbiotic EF-2001HK was observed in human colorectal adenocarcinoma HT-29 cells. Conclusions: These potential properties suggest that probiotic and postbiotic E. faecalis EF-2001 could be considered safe and retain metabolic activity suitable for human consumption. Full article
Show Figures

Figure 1

23 pages, 1910 KiB  
Article
The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study
by Nermin Basak Sentürk, Burcu Kasapoglu, Eray Sahin, Orhan Ozcan, Mehmet Ozansoy, Muzaffer Beyza Ozansoy, Pinar Siyah, Ugur Sezerman and Fikrettin Sahin
Pharmaceuticals 2024, 17(10), 1334; https://doi.org/10.3390/ph17101334 - 6 Oct 2024
Viewed by 1821
Abstract
Background/Objectives: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics [...] Read more.
Background/Objectives: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics in chemistry, as well as its potential role in modulating the gut microbiota. This study investigates the effects of inorganic boron derivatives on the gut microbiota of mice. Methods: For three weeks, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) were dissolved (200 mg/kg each) in drinking water and administered to wild-type BALB/c mice. The composition of the gut microbiota was analyzed to determine the impact of these treatments. Results: The administration of BA significantly altered the composition of the gut microbiota, resulting in a rise in advantageous species such as Barnesiella and Alistipes. Additionally, there was a decrease in some taxa associated with inflammation and illness, such as Clostridium XIVb and Bilophila. Notable increases in genera like Treponema and Catellicoccus were observed, suggesting the potential of boron compounds to enrich microbial communities with unique metabolic functions. Conclusions: These findings indicate that boron compounds may have the potential to influence gut microbiota composition positively, offering potential prebiotic effects. Further research with additional analyses is necessary to fully understand the interaction between boron and microbiota and to explore the possibility of their use as prebiotic agents in clinical settings. Full article
Show Figures

Graphical abstract

16 pages, 2819 KiB  
Article
Hair Growth Promoting Effects of Solubilized Sturgeon Oil and Its Correlation with the Gut Microbiome
by Jihee Kim, Jinho An, Yong-kwang Lee, Gwangsu Ha, Hamin Ban, Hyunseok Kong, Heetae Lee, Youngcheon Song, Chong-kil Lee, Sang Bum Kim and Kyungjae Kim
Pharmaceuticals 2024, 17(9), 1112; https://doi.org/10.3390/ph17091112 - 23 Aug 2024
Viewed by 1102
Abstract
Androgenetic alopecia is a common disease that occurs in both men and women. Several approved medications have been used to treat this condition, but they are associated with certain side effects. Therefore, use of extracts derived from natural products, such as Siberian sturgeon [...] Read more.
Androgenetic alopecia is a common disease that occurs in both men and women. Several approved medications have been used to treat this condition, but they are associated with certain side effects. Therefore, use of extracts derived from natural products, such as Siberian sturgeon (Acipenser baerii), and the regulation of the gut microbiota have become important topics of research. Sturgeon is known for its high nutritional value and anti-inflammatory properties; however, its effects on androgenetic alopecia and gut microbiota remain uncharacterized. Here, we aimed to investigate whether solubilized sturgeon oil (SSO) promotes hair growth and regulates the gut microbiome. C57BL/6 mice were divided into four groups. Three groups received topical applications of distilled water, SSO, or minoxidil, and one group was orally administered SSO. Each treatment was administered over 4 weeks. Histopathological analysis revealed a significant increase in follicle number (p < 0.001) and follicle diameter (p < 0.05). Immunohistochemical analysis revealed upregulation of β-catenin and ERK-1, markers involved in hair growth-promoting pathways. Furthermore, microbiome analysis revealed that the reduced gut microbiota was negatively correlated with these markers. Our findings indicate that oral administration of SSO promotes hair growth and regulates the abundance of hair growth-promoting gut microbiota. Full article
Show Figures

Figure 1

17 pages, 9221 KiB  
Article
Probiotic Formulations Containing Fixed and Essential Oils Ameliorates SIBO-Induced Gut Dysbiosis in Rats
by Ismail Aslan, Leyla Tarhan Celebi, Hulya Kayhan, Emine Kizilay, Mustafa Yavuz Gulbahar, Halil Kurt and Bekir Cakici
Pharmaceuticals 2023, 16(7), 1041; https://doi.org/10.3390/ph16071041 - 22 Jul 2023
Cited by 6 | Viewed by 4851
Abstract
Dysbiosis of the gut microbiota is associated with the pathogenesis of intestinal diseases such as inflammatory bowel disease, irritable bowel syndrome (IBS), small intestinal bacterial overgrowth (SIBO), and metabolic disease states such as allergies, cardiovascular diseases, obesity, and diabetes. SIBO is a condition [...] Read more.
Dysbiosis of the gut microbiota is associated with the pathogenesis of intestinal diseases such as inflammatory bowel disease, irritable bowel syndrome (IBS), small intestinal bacterial overgrowth (SIBO), and metabolic disease states such as allergies, cardiovascular diseases, obesity, and diabetes. SIBO is a condition characterized by an increased number (>1 × 103 CFU) of abnormal bacterial species in the small intestine. Interest in SIBO has gained importance due to increased awareness of the human microbiome and its potential relationships with human health and disease, which has encouraged new work in this area. In recent years, standard antibiotic regimens (rifaximin and metronidazole) have been used to treat SIBO, but solo antibiotics or their derivatives are insufficient. In this study, the therapeutic effects of the probiotic form, which contains coconut oil and traces of peppermint-lemon-patchouli essential oil, were evaluated on the Dysbiosis-Based Rat SIBO Model. There are significant differences between sick and healthy rats (p = 0.014), between sick rats and rats treated with the oil mix plus probiotic mix protocol (p = 0.026), and between rats treated with only the probiotic and only oil protocols (p = 0.030) in the evaluation of TNF-α levels. Histologically, villi distortion and loss of crypts, epithelial shedding and necrotic changes in the apical regions of the villi, and inflammatory cell infiltrations extending to the lamina propria and submucosa were observed in sick rats. Mitotic figures in villus epithelium and crypts were observed in rats treated with 9.2 × 109 CFU/1000 mg/coconut oil + trace amounts of peppermint-lemon-patchouli essential oil and a probiotic mixture (oil + probiotic mix protocol). A regression of inflammatory reactions and an increase in goblet cells were observed. A decrease was observed in inflammation markers in sick rats. On the other hand, the oil plus probiotic mix protocol recovered digestive system defects in the animals caused by dysbiosis. In the future, these treatment approaches can be effective in the treatment of SIBO. Full article
Show Figures

Figure 1

18 pages, 1779 KiB  
Article
Influence of Bifidobacterium breve on the Glycaemic Control, Lipid Profile and Microbiome of Type 2 Diabetic Subjects: A Preliminary Randomized Clinical Trial
by Chaiyavat Chaiyasut, Bhagavathi Sundaram Sivamaruthi, Narissara Lailerd, Sasithorn Sirilun, Subramanian Thangaleela, Suchanat Khongtan, Muruganantham Bharathi, Periyanaina Kesika, Manee Saelee, Thiwanya Choeisoongnern, Pranom Fukngoen, Sartjin Peerajan and Phakkharawat Sittiprapaporn
Pharmaceuticals 2023, 16(5), 695; https://doi.org/10.3390/ph16050695 - 4 May 2023
Cited by 9 | Viewed by 2557
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most highly prevalent metabolic disorders worldwide. Uncontrolled T2DM can lead to other health threats such as cardiac arrest, lower-limb amputation, blindness, stroke, impaired kidney function, and microvascular and macrovascular complications. Many studies have demonstrated [...] Read more.
Type 2 diabetes mellitus (T2DM) is one of the most highly prevalent metabolic disorders worldwide. Uncontrolled T2DM can lead to other health threats such as cardiac arrest, lower-limb amputation, blindness, stroke, impaired kidney function, and microvascular and macrovascular complications. Many studies have demonstrated the association between gut microbiota and diabetes development and probiotic supplementation in improving glycemic properties in T2DM. The study aimed to evaluate the influence of Bifidobacterium breve supplementation on glycemic control, lipid profile, and microbiome of T2DM subjects. Forty participants were randomly divided into two groups, and they received probiotics (50 × 109 CFU/day) or placebo interventions (corn starch; 10 mg/day) for 12 weeks. The changes in the blood-urea nitrogen (BUN), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), fasting blood sugar (FBS), glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine levels, and other factors such as body-mass index, visceral fat, body fat, and body weight were assessed at baseline and after 12 weeks. B. breve supplementation significantly reduced BUN, creatinine, LDL, TG, and HbA1c levels compared to the placebo group. Significant changes were observed in the microbiome of the probiotic-treated group compared to the placebo group. Firmicutes and proteobacteria were predominant in the placebo and probiotic-treated groups. Genera Streptococcus, Butyricicoccus, and species Eubacterium hallii were significantly reduced in the probiotic-treated group compared to the placebo. Overall results suggested that B. breve supplementation could prevent worsening of representative clinical parameters in T2DM subjects. The current study has limitations, including fewer subjects, a single probiotic strain, and fewer metagenomic samples for microbiome analysis. Therefore, the results of the current study require further validation using more experimental subjects. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 1862 KiB  
Review
Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy
by Yufei Deng, Xiaoying Hou, Haiping Wang, Hongzhi Du and Yuchen Liu
Pharmaceuticals 2024, 17(5), 604; https://doi.org/10.3390/ph17050604 - 8 May 2024
Viewed by 1922
Abstract
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that [...] Read more.
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy. Full article
Show Figures

Figure 1

28 pages, 1068 KiB  
Review
Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options
by Akash Kumar, Jhilam Pramanik, Nandani Goyal, Dimple Chauhan, Bhagavathi Sundaram Sivamaruthi, Bhupendra G. Prajapati and Chaiyavat Chaiyasut
Pharmaceuticals 2023, 16(4), 565; https://doi.org/10.3390/ph16040565 - 9 Apr 2023
Cited by 27 | Viewed by 10963
Abstract
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome–gut–brain [...] Read more.
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome–gut–brain axis shows. Significant evidence links anxiety and depression disorders to the community of microbes that live in the gastrointestinal system. Modified diet, fish and omega-3 fatty acid intake, macro- and micro-nutrient intake, prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, and 5-HTP regulation may all be utilized to alter the gut microbiota as a treatment approach. There are few preclinical and clinical research studies on the effectiveness and reliability of various therapeutic approaches for depression and anxiety. This article highlights relevant research on the association of gut microbiota with depression and anxiety and the different therapeutic possibilities of gut microbiota modification. Full article
Show Figures

Figure 1

Back to TopTop