sensors-logo

Journal Browser

Journal Browser

Energy Harvesting Technologies and Applications for the Internet of Things and Wireless Sensor Networks (Volume II)

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 22155

Special Issue Editors


E-Mail Website
Guest Editor
1. Laboratory of Electromechanical Systems, National Engineering School of Sfax, Sfax 3038, Tunisia
2. Measurement and Sensor Technology, Technische Universität Chemnitz, 09126 Chemnitz, Germany
Interests: energy harvesting; vibration converters; piezoelectric transducers; magnetoelectric converters; electromagnetic converters; autonomous sensor systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
Interests: sensors; transducers; energy harvesting; MEMS; NEMS; fluxgate magnetometers; green and biodegradable sensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The widespread installation of wireless sensor systems facilitates the evolution of new technology trends such as the Internet of Things (IoT), which in turn have the potential to revolutionize numerous fields, including predictive maintenance, industry automation, and big data collection. Therefore, there is a growing demand for the maintenance-free deployment of wireless sensors by integrating energy harvesting technologies to eliminate costly cable installations and battery replacements.

Energy can be harvested from various sources, such as light, electromagnetic waves, thermal, and mechanical vibration based on photoelectric, piezoelectric, electromagnetic, pyroelectric, and triboelectric effects, among others. Research on energy harvesting technologies covers a variety of topics from fundamental research on functional materials and structures to system-level integration.

The aim of this Special Issue is to gather the latest original developments in energy harvesting technologies and applications in the Industrial Internet of Things.

Specifically, this Special Issue will cover, but not be limited to, the following areas:

  • Novel energy harvesting principles and device structure designs;
  • Energy harvesting transducers (e.g., thermoelectric, photovoltaic, electromagnetic, piezoelectric, triboelectric);
  • Flexible harvesters and nanogenerators;
  • Energy harvesting communication;
  • Self-powered integrated/embedded sensor systems;
  • Wireless sensor networks powered by energy harvesting;
  • Surveys and original contributions about the feasibility of energy harvesting in real applications.

Dr. Slim Naifar
Prof. Dr. Olfa Kanoun
Prof. Dr. Carlo Trigona
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wireless sensor networks
  • energy harvesting
  • Industrial Internet of Things
  • self-powered sensors
  • ernergy harvesting communication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

21 pages, 6342 KiB  
Article
Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion
by Jinglun Li, Habilou Ouro-Koura, Hannah Arnow, Arian Nowbahari, Matthew Galarza, Meg Obispo, Xing Tong, Mehdi Azadmehr, Einar Halvorsen, Mona M. Hella, John A. Tichy and Diana-Andra Borca-Tasciuc
Sensors 2023, 23(11), 5296; https://doi.org/10.3390/s23115296 - 2 Jun 2023
Cited by 2 | Viewed by 2289
Abstract
Silicon-based kinetic energy converters employing variable capacitors, also known as electrostatic vibration energy harvesters, hold promise as power sources for Internet of Things devices. However, for most wireless applications, such as wearable technology or environmental and structural monitoring, the ambient vibration is often [...] Read more.
Silicon-based kinetic energy converters employing variable capacitors, also known as electrostatic vibration energy harvesters, hold promise as power sources for Internet of Things devices. However, for most wireless applications, such as wearable technology or environmental and structural monitoring, the ambient vibration is often at relatively low frequencies (1–100 Hz). Since the power output of electrostatic harvesters is positively correlated to the frequency of capacitance oscillation, typical electrostatic energy harvesters, designed to match the natural frequency of ambient vibrations, do not produce sufficient power output. Moreover, energy conversion is limited to a narrow range of input frequencies. To address these shortcomings, an impacted-based electrostatic energy harvester is explored experimentally. The impact refers to electrode collision and it triggers frequency upconversion, namely a secondary high-frequency free oscillation of the electrodes overlapping with primary device oscillation tuned to input vibration frequency. The main purpose of high-frequency oscillation is to enable additional energy conversion cycles since this will increase the energy output. The devices investigated were fabricated using a commercial microfabrication foundry process and were experimentally studied. These devices exhibit non-uniform cross-section electrodes and a springless mass. The non-uniform width electrodes were used to prevent pull-in following electrode collision. Springless masses from different materials and sizes, such as 0.5 mm diameter Tungsten carbide, 0.8 mm diameter Tungsten carbide, zirconium dioxide, and silicon nitride, were added in an attempt to force collisions over a range of applied frequencies that would not otherwise result in collisions. The results show that the system operates over a relatively wide frequency range (up to 700 Hz frequency range), with the lower limit far below the natural frequency of the device. The addition of the springless mass successfully increased the device bandwidth. For example, at a low peak-to-peak vibration acceleration of 0.5 g (peak-to-peak), the addition of a zirconium dioxide ball doubled the device’s bandwidth. Testing with different balls indicates that the different sizes and material properties have different effects on the device’s performance, altering its mechanical and electrical damping. Full article
Show Figures

Figure 1

10 pages, 3346 KiB  
Article
Power Gain from Energy Harvesting Sources at High MPPT Sampling Rates
by Manel Gasulla and Matias Carandell
Sensors 2023, 23(9), 4388; https://doi.org/10.3390/s23094388 - 29 Apr 2023
Cited by 1 | Viewed by 1612
Abstract
Energy harvesting (EH) sources require the tracking of their maximum power point (MPP) to ensure that maximum energy is captured. This tracking process, performed by an MPP tracker (MPPT), is performed by periodically measuring the EH transducer’s output at a given sampling rate. [...] Read more.
Energy harvesting (EH) sources require the tracking of their maximum power point (MPP) to ensure that maximum energy is captured. This tracking process, performed by an MPP tracker (MPPT), is performed by periodically measuring the EH transducer’s output at a given sampling rate. The harvested power as a function of the sampling parameters has been analyzed in a few works, but the power gain achieved with respect to the case of a much slower sampling rate than the EH source’s frequency has not been assessed so far. In this work, simple expressions are obtained that predict this gain assuming a Thévenin equivalent for the EH transducer. It is shown that the power gain depends on the relationship between the square of AC to DC open circuit voltage of the EH transducer. On the other hand, it is proven that harvested power increases, using a suitable constant signal for the MPP voltage instead of tracking the MPP at a low sampling rate. Experimental results confirmed the theoretical predictions. First, a function generator with a series resistor of 1 kΩ was used, emulating a generic Thévenin equivalent EH. Three waveform types were used (sinus, square, and triangular) with a DC voltage of 2.5 V and AC rms voltage of 0.83 V. A commercial MPPT with a fixed sampling rate of 3 Hz was used and the frequency of the waveforms was changed from 50 mHz to 50 Hz, thus effectively emulating different sampling rates. Experimental power gains of 11.1%, 20.7%, and 7.43% were, respectively, achieved for the sinus, square, and triangular waves, mainly agreeing with the theoretical predicted ones. Then, experimental tests were carried out with a wave energy converter (WEC) embedded into a drifter and attached to a linear shaker, with a sinus excitation frequency of 2 Hz and peak-to-peak amplitude of 0.4 g, in order to emulate the drifter’s movement under a sea environment. The WEC provided a sinus-like waveform. In this case, another commercial MPPT with a sampling period of 16 s was used for generating a slow sampling rate, whereas a custom MPPT with a sampling rate of 60 Hz was used for generating a high sampling rate. A power gain around 20% was achieved in this case, also agreeing with the predicted gain. Full article
Show Figures

Figure 1

14 pages, 11938 KiB  
Communication
A Portable Triboelectric Nanogenerator Based on Dehydrated Nopal Powder for Powering Electronic Devices
by Ernesto A. Elvira-Hernández, Omar I. Nava-Galindo, Elisa K. Martínez-Lara, Enrique Delgado-Alvarado, Francisco López-Huerta, Arxel De León, Carlos Gallardo-Vega and Agustín L. Herrera-May
Sensors 2023, 23(9), 4195; https://doi.org/10.3390/s23094195 - 22 Apr 2023
Cited by 6 | Viewed by 3004
Abstract
Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric [...] Read more.
Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric nanogenerator based on dehydrated nopal powder (NOP-TENG) as novel triboelectric material. In addition, this nanogenerator uses a polyimide film tape adhered to two copper-coated Bakelite plates. The NOP-TENG generates a power density of 2309.98 μW·m−2 with a load resistance of 76.89 MΩ by applying a hand force on its outer surface. Furthermore, the nanogenerator shows a power density of 556.72 μW·m−2 with a load resistance of 76.89 MΩ and under 4g acceleration at 15 Hz. The output voltage of the NOP-TENG depicts a stable output performance even after 27,000 operation cycles. This nanogenerator can light eighteen green commercial LEDs and power a digital calculator. The proposed NOP-TENG has a simple structure, easy manufacturing process, stable electric behavior, and cost-effective output performance. This portable nanogenerator may power electronic devices using different vibration energy sources. Full article
Show Figures

Graphical abstract

13 pages, 6015 KiB  
Article
High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen
by Woosol Lee and Yong-Kyu Yoon
Sensors 2023, 23(4), 1972; https://doi.org/10.3390/s23041972 - 10 Feb 2023
Cited by 4 | Viewed by 2060
Abstract
This work presents a high-efficiency reconfigurable wireless-power-transfer (WPT) system using fully rollable Tx/Rx coils and a metasurface (MS) screen working at 6.78 MHz, for the first time. The MS screens are placed between the Tx and Rx to magnify the power-transfer efficiency (PTE) [...] Read more.
This work presents a high-efficiency reconfigurable wireless-power-transfer (WPT) system using fully rollable Tx/Rx coils and a metasurface (MS) screen working at 6.78 MHz, for the first time. The MS screens are placed between the Tx and Rx to magnify the power-transfer efficiency (PTE) of the WPT system. The proposed MS-based WPT can be rolled down or rolled up as required, which allows end-users to use the space more flexibly. In the measurement results, the PTE of the WPT is improved from 13.32% to 32.49% at a power-transfer distance (PTD) of 40 cm with one MS screen, 5.42% to 42.25% at a PTD of 50 cm with two MS screens, 1.78% to 49% at a PTD of 60 cm with three MS screens, 0.85% to 46.24% at a PTD of 70 cm with four MS screens. The measured PTE results indicate that the demonstrated MS screens are greatly effective for magnifying the PTE and the PTD of the WPT. In addition, the measured PTE results in the misaligned condition verify that the MS screens also help increase the PTE of the WPT even in the misalignment condition. Full article
Show Figures

Figure 1

23 pages, 4918 KiB  
Article
Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting
by Meriam Ben Ammar, Salwa Sahnoun, Ahmed Fakhfakh, Christian Viehweger and Olfa Kanoun
Sensors 2023, 23(4), 1830; https://doi.org/10.3390/s23041830 - 6 Feb 2023
Cited by 8 | Viewed by 5513
Abstract
Piezoelectric Vibration converters are nowadays gaining importance for supplying low-powered sensor nodes and wearable electronic devices. Energy management interfaces are thereby needed to ensure voltage compatibility between the harvester element and the electric load. To improve power extraction ability, resonant interfaces such as [...] Read more.
Piezoelectric Vibration converters are nowadays gaining importance for supplying low-powered sensor nodes and wearable electronic devices. Energy management interfaces are thereby needed to ensure voltage compatibility between the harvester element and the electric load. To improve power extraction ability, resonant interfaces such as Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) have been proposed. The main challenges for designing this type of energy management circuits are to realise self-powered solutions and increase the energy efficiency and adaptability of the interface for low-power operation modes corresponding to low frequencies and irregular vibration mechanical energy sources. In this work, a novel Self-Powered (SP P-SSHI) energy management circuit is proposed which is able to harvest energy from piezoelectric converters at low frequencies and irregular chock like footstep input excitations. It has a good power extraction ability and is adaptable for different storage capacitors and loads. As a proof of concept, a piezoelectric shoe insole with six integrated parallel piezoelectric sensors (PEts) was designed and implemented to validate the performance of the energy management interface circuit. Under a vibration excitation of 1 Hz corresponding to a (moderate walking speed), the maximum reached efficiency and power of the proposed interface is 83.02% and 3.6 mW respectively for the designed insole, a 10 kΩ resistive load and a 10 μF storage capacitor. The enhanced SP-PSSHI circuit was validated to charge a 10 μF capacitor to 6 V in 3.94 s and a 1 mF capacitor to 3.2 V in 27.64 s. The proposed energy management interface has a cold start-up ability and was also validated to charge a (65 mAh, 3.1 V) maganese dioxide coin cell Lithium battery (ML 2032), demonstrating the ability of the proposed wearable piezoelectric energy harvesting system to provide an autonomous power supply for wearable wireless sensors. Full article
Show Figures

Figure 1

26 pages, 5370 KiB  
Article
Modular Electromagnetic Transducer for Optimized Energy Transfer via Electric and/or Magnetic Fields
by George-Claudiu Zărnescu, Lucian Pîslaru-Dănescu and Athanasios Tiliakos
Sensors 2023, 23(3), 1291; https://doi.org/10.3390/s23031291 - 23 Jan 2023
Cited by 1 | Viewed by 2757
Abstract
In this paper, a modular electromagnetic transducer that achieves the optimal transfer of energy from the electric and/or magnetic fields is proposed. Both the magnetic field resonance coupling and the influence of the electric field near the copper transducers of the printed circuit [...] Read more.
In this paper, a modular electromagnetic transducer that achieves the optimal transfer of energy from the electric and/or magnetic fields is proposed. Both the magnetic field resonance coupling and the influence of the electric field near the copper transducers of the printed circuit board and inside the FR4-type epoxy material are considered. In our printed arrays of flat transducers, we consider face-to-face capacitances for the study of resonance coupling. Because the space between coil turns is almost double the plate thickness, the coplanar capacitance can be ignored for frequencies under 2 MHz. A radio frequency (RF) transmitter and transducer were built to demonstrate the increased energy transfer efficiency when using both electric and magnetic fields in the near-field region. The transversal leakage flux coupling of a long RF coil was more efficient than a simple axial magnetic field coupling when using pancake transceiver coils. The optimal configuration having one long coil at the base and two or more flat coils as capacitor plates near coil ends generated the highest tandem of magnetic and electrical fields. A power regression tool was used to convert and simplify the transducer current and voltage variation with distance. In this regard, the current change corresponded to magnetic field variation and the voltage change to the electric field variation. New formulas for estimating the near-field region and the self-capacitance of the RF transformer coil are proposed; the optimal function in the frequency domain for a given transducer distance was defined by simulation. Full article
Show Figures

Figure 1

13 pages, 4433 KiB  
Article
Silicon Self-Switching Diode (SSD) as a Full-Wave Bridge Rectifier in 5G Networks Frequencies
by Tan Yi Liang, Nor Farhani Zakaria, Shahrir Rizal Kasjoo, Safizan Shaari, Muammar Mohamad Isa, Mohd Khairuddin Md Arshad and Arun Kumar Singh
Sensors 2022, 22(24), 9712; https://doi.org/10.3390/s22249712 - 11 Dec 2022
Cited by 1 | Viewed by 1822
Abstract
The rapid growth of wireless technology has improved the network’s technology from 4G to 5G, with sub-6 GHz being the centre of attention as the primary communication spectrum band. To effectively benefit this exclusive network, the improvement in the mm-wave detection of this [...] Read more.
The rapid growth of wireless technology has improved the network’s technology from 4G to 5G, with sub-6 GHz being the centre of attention as the primary communication spectrum band. To effectively benefit this exclusive network, the improvement in the mm-wave detection of this range is crucial. In this work, a silicon self-switching device (SSD) based full-wave bridge rectifier was proposed as a candidate for a usable RF-DC converter in this frequency range. SSD has a similar operation to a conventional pn junction diode, but with advantages in fabrication simplicity where it does not require doping and junctions. The optimized structure of the SSD was cascaded and arranged to create a functional full-wave bridge rectifier with a quadratic relationship between the input voltage and outputs current. AC transient analysis and theoretical calculation performed on the full-wave rectifier shows an estimated cut-off frequency at ~12 GHz, with calculated responsivity and noise equivalent power of 1956.72 V/W and 2.3753 pW/Hz1/2, respectively. These results show the capability of silicon SSD to function as a full-wave bridge rectifier and is a potential candidate for RF-DC conversion in the targeted 5G frequency band and can be exploited for future energy harvesting application. Full article
Show Figures

Figure 1

Other

Jump to: Research

18 pages, 7038 KiB  
Technical Note
Analysis of a Clapping Vibration Energy Harvesting System in a Rotating Magnetic Field
by Yi-Ren Wang, Chao-Kang Feng, Chin-Han Cheng and Pin-Tung Chen
Sensors 2022, 22(18), 6916; https://doi.org/10.3390/s22186916 - 13 Sep 2022
Cited by 2 | Viewed by 1687
Abstract
This technical note proposes a clapping vibration energy harvesting system (CVEH system) installed in a rotating system. This device includes a rotating wheel, a drive shaft that rotates the wheel, and a double elastic steel sheet fixed on the drive shaft. One of [...] Read more.
This technical note proposes a clapping vibration energy harvesting system (CVEH system) installed in a rotating system. This device includes a rotating wheel, a drive shaft that rotates the wheel, and a double elastic steel sheet fixed on the drive shaft. One of the free ends of the steel is fixed with a magnet, and the free end of the other elastic steel is fixed with a PZT patch. We also install an array of magnets on the periphery (rim) of the wheel. The rim magnets repulse the magnet on the elastic steel sheet of the transmission shaft, causing the elastic steel to oscillate periodically, and slap the piezoelectric patch installed on the other elastic steel sheet to generate electricity. In this study, the authors’ previous study on the voltage output was improved, and the accurate nonlinear natural frequency of the elastic steel was obtained by the dimensional analysis method. By adjusting the rotation speed of the wheel, the precise frequency was controlled to accurately excite the energy harvesting system and obtain the best output voltage. A simple experiment was also performed to correlate with the theoretical model. The voltage and power output efficiencies of the nonlinear frequency to linear frequency excitation of the CVEH system can reach 15.7% and 33.5%, respectively. This study confirms that the clapping VEH system has practical power generation benefits, and verifies that nonlinear frequencies are more effective than linear frequencies to excite the CVEH system to generate electricity. Full article
Show Figures

Figure 1

Back to TopTop