Ergot Alkaloids: Chemistry, Biology and Toxicology
A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".
Deadline for manuscript submissions: closed (15 January 2015) | Viewed by 124152
Special Issue Editor
Special Issue Information
Dear Colleagues,
Alkaloids encompass a wide diversity of nitrogen-containing specialized (secondary) metabolites, which are often associated with plants and provide defense against herbivores, pathogens and parasites. A class of alkaloids of particular relevance to human society, medicine and agriculture is the ergot alkaloids, so named because many ergot fungi (Claviceps species) produce these metabolites in abundance. Ergot alkaloids are known from plant-symbiotic and plant-pathogenic fungi in family Clavicipitaceae (phylum Ascomycota), from other orders of fungi, and from other biological sources. They range in size and complexity from the tricyclic and tetracyclic clavines to the hexacyclic and heptacyclic ergopeptines. Though some are cytotoxic and antimicrobial, most are primarily neurotropic. Ergot alkaloids can occur in grains contaminated by sclerotia (ergots) of Claviceps species, or in forage grasses, and morning glory plants where they are produced by endophytic fungi. Ingestion of ergot alkaloids causes poisonings described as convulsive or gangrenous ergotism depending on the forms of the alkaloids. On the other hand, at appropriate doses, and sometimes in modified forms, ergot alkaloids are useful as pharmaceuticals, including ergonovine (= ergometrine) in childbirth, ergotamine for migraines, and bromocryptine for Parkinson’s disease. The serendipitous discovery of a particularly hallucinogenic derivative, lysergic acid diethylamide (LSD), played a major role in the Western counterculture of the 1960s and 1970s. The ergot alkaloid biosynthetic pathway, the enzymes involved, and the genes encoding those enzymes have largely been elucidated. Evolutionary diversification of ergot alkaloids stems from changes in substrate and product specificity of some key enzymes, as well as acquisition and losses of genes for biosynthesis and modification enzymes. Fungi with functional ergot alkaloid pathways can have as few as four genes for chanoclavine biosynthesis, or as many as 14 genes for production of an array of lysergic acid amides and ergopeptines. This special issue will address the following aspects of ergot alkaloids:
1. Biosynthetic pathways: Clavines
2: Biosynthetic pathways: Lysergic acid amides and ergopeptines
3. Chemical diversity: Enzyme specificities
4. Chemical diversity: Genetics, genomics and evolution
5. Activities and effects: Humans and small animals
6. Activities and effects: Livestock
Prof. Dr. Christopher L. Schardl
Guest Editor
Keywords
- ergot alkaloids
- mycotoxins
- natural products
- secondary metabolism
- biosynthetic pathways
- enzymes
- genomics
- fungi
- symbiosis
- toxicology
- food safety
- livestock health
- pasture management
- forage plants
- poisonous plants
- therapeutic drugs
- pharmacology
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.