Topic Editors

COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain
COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain

Nanomaterials and Diseases

Abstract submission deadline
closed (13 August 2024)
Manuscript submission deadline
closed (13 October 2024)
Viewed by
11470

Topic Information

Dear Colleagues,

As a very suitable technology for the diagnosis and treatment of various diseases, nanoparticles have emerged as tools in the field of medicine. The rapid development of nanomaterials has led to new methods for clinical diagnosis and provided a scientific basis for disease prevention and treatment. This Special Issue aims to highlight the current state of the art in the use of different nanomaterials in diseases, focusing on the future prospects of nanomaterials for improving current therapies in a preclinical context.

Dr. Diana Díaz-García
Prof. Dr. Santiago Gómez-Ruiz
Topic Editors

Keywords

  • targeted therapy
  • biocompatibility
  • nanomaterial
  • anticancer
  • cytotoxicity
  • diseases

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Cancers
cancers
4.5 8.0 2009 16.3 Days CHF 2900
Diseases
diseases
2.9 0.8 2013 18.9 Days CHF 1800
Nanomaterials
nanomaterials
4.4 8.5 2010 13.8 Days CHF 2900
Pharmaceuticals
pharmaceuticals
4.3 6.1 2004 12.8 Days CHF 2900
Materials
materials
3.1 5.8 2008 15.5 Days CHF 2600

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
30 pages, 2989 KiB  
Review
Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects
by Jagadeesh Rajaram and Yaswanth Kuthati
Cancers 2024, 16(21), 3581; https://doi.org/10.3390/cancers16213581 - 24 Oct 2024
Viewed by 611
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, [...] Read more.
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles. Full article
(This article belongs to the Topic Nanomaterials and Diseases)
Show Figures

Figure 1

22 pages, 4005 KiB  
Article
Chitosan Nanoparticle-Mediated Delivery of Curcumin Suppresses Tumor Growth in Breast Cancer
by Barnalee Mishra, Amit Singh Yadav, Diksha Malhotra, Tandrima Mitra, Simran Sinsinwar, N. N. V. Radharani, Saroj Ranjan Sahoo, Srinivas Patnaik and Gopal C. Kundu
Nanomaterials 2024, 14(15), 1294; https://doi.org/10.3390/nano14151294 - 31 Jul 2024
Viewed by 1616
Abstract
Curcumin is a nutraceutical known to have numerous medicinal effects including anticancer activity. However, due to its poor water solubility and bioavailability, the therapeutic impact of curcumin against cancer, including breast cancer, has been constrained. Encapsulating curcumin into chitosan nanoparticles (CHNPs) is an [...] Read more.
Curcumin is a nutraceutical known to have numerous medicinal effects including anticancer activity. However, due to its poor water solubility and bioavailability, the therapeutic impact of curcumin against cancer, including breast cancer, has been constrained. Encapsulating curcumin into chitosan nanoparticles (CHNPs) is an effective method to increase its bioavailability as well as antitumorigenic activity. In the current study, the effects of curcumin-encapsulated CHNPs (Cur-CHNPs) on cell migration, targeted homing and tumor growth were examined using in vitro and in vivo breast cancer models. Cur-CHNPs possessed a monodispersed nature with long-term colloidal stability, and demonstrated significant inhibition of cell viability in vitro, which was potentiated by 5-Fluorouracil (5-FU). Outcomes of the in vivo imaging studies confirmed effective tumor targeting and retention ability of Cur-CHNPs, thereby suppressing breast tumor growth in mice models. Overall, the results demonstrated that Cur-CHNPs could be an effective candidate drug formulation for management of breast cancer. Full article
(This article belongs to the Topic Nanomaterials and Diseases)
Show Figures

Figure 1

21 pages, 5130 KiB  
Review
Trends in Nanoparticles for Leishmania Treatment: A Bibliometric and Network Analysis
by Gabriel Mazón-Ortiz, Galo Cerda-Mejía, Eberto Gutiérrez Morales, Karel Diéguez-Santana, Juan M. Ruso and Humberto González-Díaz
Diseases 2023, 11(4), 153; https://doi.org/10.3390/diseases11040153 - 28 Oct 2023
Viewed by 2861
Abstract
Leishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors’ contributions, institutions, [...] Read more.
Leishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors’ contributions, institutions, and nations in terms of productivity, citations, and bibliographic linkages to the application of nanoparticles (NPs) for the treatment of leishmania. The study is based on a sample of 524 Scopus documents from 1991 to 2022. Utilising the Bibliometrix R-Tool version 4.0 and VOSviewer software, version 1.6.17 the analysis was developed. We identified crucial subjects associated with the application of NPs in the field of antileishmanial development (NPs and drug formulation for leishmaniasis treatment, animal models, and experiments). We selected research topics that were out of date and oversaturated. Simultaneously, we proposed developing subjects based on multiple analyses of the corpus of published scientific literature (title, abstract, and keywords). Finally, the technique used contributed to the development of a broader and more specific “big picture” of nanomedicine research in antileishmanial studies for future projects. Full article
(This article belongs to the Topic Nanomaterials and Diseases)
Show Figures

Figure 1

14 pages, 4029 KiB  
Article
Activity of Bacteriophage D29 Loaded on Nanoliposomes against Macrophages Infected with Mycobacterium tuberculosis
by Ana P. B. Silva, Cesar Augusto Roque-Borda, Christian S. Carnero Canales, Laura Maria Duran Gleriani Primo, Isabel C. Silva, Camila M. Ribeiro, Marlus Chorilli, Patrícia Bento da Silva, Joás L. Silva and Fernando Rogério Pavan
Diseases 2023, 11(4), 150; https://doi.org/10.3390/diseases11040150 - 26 Oct 2023
Cited by 5 | Viewed by 2653
Abstract
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally [...] Read more.
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time–kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment. Full article
(This article belongs to the Topic Nanomaterials and Diseases)
Show Figures

Graphical abstract

14 pages, 1750 KiB  
Article
The Impact of MiR-33a-5p Inhibition in Pro-Inflammatory Endothelial Cells
by Kun Huang, Mark Pitman, Olanrewaju Oladosu, Jing Echesabal-Chen, Lucia Vojtech, Ikechukwu Esobi, Jessica Larsen, Hanjoong Jo and Alexis Stamatikos
Diseases 2023, 11(3), 88; https://doi.org/10.3390/diseases11030088 - 24 Jun 2023
Cited by 3 | Viewed by 2236
Abstract
Evidence suggests cholesterol accumulation in pro-inflammatory endothelial cells (EC) contributes to triggering atherogenesis and driving atherosclerosis progression. Therefore, inhibiting miR-33a-5p within inflamed endothelium may prevent and treat atherosclerosis by enhancing apoAI-mediated cholesterol efflux by upregulating ABCA1. However, it is not entirely elucidated whether [...] Read more.
Evidence suggests cholesterol accumulation in pro-inflammatory endothelial cells (EC) contributes to triggering atherogenesis and driving atherosclerosis progression. Therefore, inhibiting miR-33a-5p within inflamed endothelium may prevent and treat atherosclerosis by enhancing apoAI-mediated cholesterol efflux by upregulating ABCA1. However, it is not entirely elucidated whether inhibition of miR-33a-5p in pro-inflammatory EC is capable of increasing ABCA1-dependent cholesterol efflux. In our study, we initially transfected LPS-challenged, immortalized mouse aortic EC (iMAEC) with either pAntimiR33a5p plasmid DNA or the control plasmid, pScr. We detected significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux in iMAEC transfected with pAntimiR33a5p when compared to iMAEC transfected with pScr. We subsequently used polymersomes targeting inflamed endothelium to deliver either pAntimiR33a5p or pScr to cultured iMAEC and showed that the polymersomes were selective in targeting pro-inflammatory iMAEC. Moreover, when we exposed LPS-challenged iMAEC to these polymersomes, we observed a significant decrease in miR-33a-5p expression in iMAEC incubated with polymersomes containing pAntimR33a5p versus control iMAEC. We also detected non-significant increases in both ABCA1 protein and apoAI-mediated cholesterol in iMAEC exposed to polymersomes containing pAntimR33a5p when compared to control iMAEC. Based on our results, inhibiting miR-33a-5p in pro-inflammatory EC exhibits atheroprotective effects, and so precisely delivering anti-miR-33a-5p to these cells is a promising anti-atherogenic strategy. Full article
(This article belongs to the Topic Nanomaterials and Diseases)
Show Figures

Figure 1

Back to TopTop