A Class-Selective Immunoassay for Sulfonamides Residue Detection in Milk Using a Superior Polyclonal Antibody with Broad Specificity and Highly Uniform Affinity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rational Design of Novel Hapten SA10-X
2.2. Synthesis and Identification of Hapten SA10-X
2.3. Production and Specificity of pAb
2.4. CoMFA for pAb
2.5. Optimization of ELISA
2.6. Detection of Milk Samples
3. Materials and Methods
3.1. Reagents, Materials and Apparatus
3.2. Buffers and Solutions
3.3. Hapten SA10-X and Bioconjugates Synthesis
3.4. Polyclonal Antibody Generation
3.5. Molecular Modeling Study
3.6. Competitive Indirect ELISA Procedure
3.7. Assay Optimization
3.8. Milk Samples Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Miralles, J.; Moreno, A. Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Control 2011, 22, 993–999. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, L.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. J. Agric. Food Chem. 2017, 65, 8248–8255. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, Z.; Beier, R.C.; Jiang, H.; Wu, Y.; Shen, J. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay. Anal. Chem. 2013, 85, 1995–1999. [Google Scholar] [CrossRef]
- PRC Ministry of Agriculture. Bulletin No 235, Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin; Ministry of Agriculture and Rural Affairs: Beijing, China, 2002.
- Food and Drug Administration. Tolerances for Residues of New Animal Drugs in Food; Title 21: Food and Drugs, Part 556. Code of Federal Regulations; Office of the Federal Register: Washington, DC, USA, 2018.
- European Union. Commission regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, 15, 1–72. [Google Scholar]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. Trends Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Beier, R.C.; Lei, H.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.; Yang, J.; Xu, Z. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Anal. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Muldoon, M.T.; Font, I.A.; Beier, R.C.; Holtzapple, C.K.; Young, C.R.; Stanker, L.H. Development of a cross-reactive monoclonal antibody to sulfonamide antibiotics: Evidence for structural conformation-selective hapten recognition. Food Agric. Immunol. 1999, 11, 117–134. [Google Scholar] [CrossRef]
- Haasnoot, W.; Cazemier, G.; Pre, J.D.; Kemmers-Voncken, A.; Bienenmann-Ploum, M.; Verheijen, R. Sulphonamide antibodies: From specific polyclonals to generic monoclonals. Food Agric. Immunol. 2000, 12, 15–30. [Google Scholar] [CrossRef]
- Haasnoot, W.; Pre, J.D.; Cazemier, G.; Kemmers-Voncken, A.; Verheijen, R.; Jansen, B.J.M. Monoclonal antibodies against a sulfathiazole derivative for the immunochemical detection of sulfonamides. Food Agric. Immunol. 2000, 12, 127–138. [Google Scholar] [CrossRef]
- Cliquet, P.; Cox, E.; Haasnoot, W.; Schacht, E.; Goddeeris, B.M. Generation of group-specific antibodies against sulfonamides. J. Agric. Food Chem. 2003, 51, 5835–5842. [Google Scholar] [CrossRef]
- Zhou, Q.; Peng, D.; Wang, Y.; Pan, Y.; Wan, D.; Zhang, X.; Yuan, Z. A novel hapten and monoclonal-based enzyme-linked immunosorbent assay for sulfonamides in edible animal tissues. Food Chem. 2014, 154, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Franek, M.; Diblikova, I.; Cernoch, I.; Vass, M.; Hruska, K. Broad-specificity immunoassays for sulfonamide detection: Immunochemical strategy for generic antibodies and competitors. Anal. Chem. 2006, 78, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Korpimäki, T.; Hagren, V.; Brockmann, E.-C.; Tuomola, M. Generic lanthanide fluoroimmunoassay for the simultaneous screening of 18 sulfonamides using an engineered antibody. Anal. Chem. 2004, 76, 3091–3098. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, L.; Xu, L.; Song, S.; Kuang, H.; Cui, G.; Xu, C. Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res. 2017, 10, 2833–2844. [Google Scholar] [CrossRef]
- Wang, Z.; Beier, R.C.; Sheng, Y.; Zhang, S.; Jiang, W.; Wang, Z.; Wang, J.; Shen, J. Monoclonal antibodies with group specificity toward sulfonamides: Selection of hapten and antibody selectivity. Anal. Bioanal. Chem. 2013, 405, 4027–4037. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, X.; Wen, K.; Zhang, S.; Li, C.; Shen, J. A highly sensitive and class-specific fluorescence polarisation assay for sulphonamides based on dihydropteroate synthase. Biosens. Bioelectron. 2015, 70, 1–4. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Yuan, J.; Wang, X. Determination of sulfonamides in swine meat by immunoaffinity chromatography. J. AOAC Int. 2000, 83, 830–836. [Google Scholar]
- Ermolenko, D.N.; Eremin, S.A.; Mart’ianov, A.A.; Zherdev, A.V.; Dzantiev, B.B. A new generic enzyme immunoassay for sulfonamides. Anal. Lett. 2007, 40, 1047–1062. [Google Scholar] [CrossRef]
- Adrian, J.; Font, H.; Diserens, J.-M.; Sánchez-Baeza, F.; Marco, M.-P. Generation of broad specificity antibodies for sulfonamide antibiotics and development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of milk samples. J. Agric. Food Chem. 2009, 57, 385–394. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Z.; Wang, L.; Zhang, Y.; Wang, S. Hapten synthesis and development of polyclonal antibody-based multi-sulfonamide immunoassays. J. Agric. Food Chem. 2006, 54, 4499–4505. [Google Scholar] [CrossRef]
- Smith, D.S.; Hassan, M.; Nargessi, R.D. Principles and practice of fluoroimmunoassay procedures. In Modern Fluorescence Spectroscopy; Wehry, E.L., Ed.; Springer: Boston, MA, USA, 1981; pp. 143–191. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Liang, X.; Zhang, S.; Shi, W.; Shen, J. Forcing immunoassay for sulfonamides to higher sensitivity and broader detection spectrum by site heterologous hapten inducing affinity improvement. Anal. Methods 2013, 5, 6990–7000. [Google Scholar] [CrossRef]
- Yu, X.; Tao, X.; Shen, J.; Zhang, S.; Cao, X.; Chen, M.; Wang, W.; Wang, Z.; Wen, K. A one-step chemiluminescence immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single chain Fv–alkaline phosphatase fusion protein. Anal. Methods 2015, 7, 9032–9039. [Google Scholar] [CrossRef]
- Yu, X.; Wen, K.; Wang, Z.; Zhang, X.; Li, C.; Zhang, S.; Shen, J. General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Anal. Chem. 2016, 88, 3512–3520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, Y.; Ding, S.; He, F.; Beier, R.C.; Li, J.; Jiang, H.; Feng, C.; Wan, Y.; Zhang, S.; et al. Development of a monoclonal antibody-based broad-specificity ELISA for fluoroquinolone antibiotics in foods and molecular modeling studies of cross-reactive compounds. Anal. Chem. 2007, 79, 4471–4483. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of pAb, mAb 4C7 and mAb 4D11 are available from the authors. |
SAs | Spiked Concentration (µg L−1) | Batch #1 | Batch #2 | Batch #3 | CV (%) | |||
---|---|---|---|---|---|---|---|---|
Recovery (%) | CV (%) | Recovery (%) | CV (%) | Recovery (%) | CV (%) | |||
SDM | 25 | 80.2 | 8.6 | 81.9 | 6.6 | 81.0 | 4.8 | 1.0 |
100 | 102.0 | 2.6 | 104.9 | 5.3 | 98.5 | 4.1 | 3.1 | |
400 | 91.3 | 11.5 | 93.6 | 6.4 | 100.3 | 6.5 | 4.9 | |
SMM | 25 | 79.9 | 1.5 | 85.3 | 5.4 | 86.8 | 4.7 | 4.3 |
100 | 96.7 | 10.7 | 100.8 | 5.8 | 97.5 | 6.7 | 2.2 | |
400 | 100.9 | 8.4 | 99.5 | 10.1 | 93.3 | 10.1 | 4.1 | |
SMX | 25 | 98.9 | 8.9 | 100.2 | 12.8 | 98.0 | 7.4 | 1.1 |
100 | 103.3 | 7.6 | 107.5 | 11.9 | 100.1 | 3.8 | 3.6 | |
400 | 72.0 | 3.5 | 74.7 | 2.5 | 80.7 | 9.3 | 5.9 | |
SMZ | 25 | 90.2 | 5.8 | 91.7 | 8.8 | 95.1 | 13.6 | 2.7 |
100 | 97.0 | 4.4 | 93.7 | 3.5 | 88.8 | 6.1 | 4.4 | |
400 | 97.8 | 14.1 | 98.6 | 11.4 | 102.7 | 7.8 | 2.6 | |
SQX | 25 | 94.8 | 2.6 | 99.2 | 1.1 | 95.3 | 3.5 | 2.5 |
100 | 94.7 | 3.1 | 91.3 | 3.4 | 100.7 | 8.0 | 5.0 | |
400 | 101.3 | 2.5 | 97.3 | 3.5 | 96.0 | 3.4 | 2.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Luo, X.; Li, Y.; Yang, H.; Liang, X.; Wen, K.; Cao, Y.; Li, C.; Wang, W.; Shi, W.; et al. A Class-Selective Immunoassay for Sulfonamides Residue Detection in Milk Using a Superior Polyclonal Antibody with Broad Specificity and Highly Uniform Affinity. Molecules 2019, 24, 443. https://doi.org/10.3390/molecules24030443
Li C, Luo X, Li Y, Yang H, Liang X, Wen K, Cao Y, Li C, Wang W, Shi W, et al. A Class-Selective Immunoassay for Sulfonamides Residue Detection in Milk Using a Superior Polyclonal Antibody with Broad Specificity and Highly Uniform Affinity. Molecules. 2019; 24(3):443. https://doi.org/10.3390/molecules24030443
Chicago/Turabian StyleLi, Chenglong, Xiangshu Luo, Yonghan Li, Huijuan Yang, Xiao Liang, Kai Wen, Yanxin Cao, Chao Li, Weiyu Wang, Weimin Shi, and et al. 2019. "A Class-Selective Immunoassay for Sulfonamides Residue Detection in Milk Using a Superior Polyclonal Antibody with Broad Specificity and Highly Uniform Affinity" Molecules 24, no. 3: 443. https://doi.org/10.3390/molecules24030443
APA StyleLi, C., Luo, X., Li, Y., Yang, H., Liang, X., Wen, K., Cao, Y., Li, C., Wang, W., Shi, W., Zhang, S., Yu, X., & Wang, Z. (2019). A Class-Selective Immunoassay for Sulfonamides Residue Detection in Milk Using a Superior Polyclonal Antibody with Broad Specificity and Highly Uniform Affinity. Molecules, 24(3), 443. https://doi.org/10.3390/molecules24030443