Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example
Abstract
:1. Introduction
2. Cyclotron Production Facilities
3. Radiometals Cyclotron-Production Process
3.1. Solid and Liquid Targets
- →
- substitution of the aluminum target body with one made of niobium, more resistant to corrosion;
- →
- usage of nitrate rather than chloride solution thus minimizing gas formation and avoiding HAVAR® corrosion;
- →
- addition of nitric acid to the target solution thus preventing the formation of solid precipitate and minimizing gas evolution;
- →
- substitution of the HAVAR® foil with a niobium foil improving the resistance of the foil to the acidity of the target solution.
3.2. The role of Radiochemical Processing in the Radiometal Cyclotron-Production
Automation
3.3. The Target Recovery
4. The case of Cyclotron Produced 47Sc: an Example
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Qaim, S.M. Nuclear data for medical applications: An overview. Radiochim. Acta 2001, 89, 189–196. [Google Scholar] [CrossRef]
- Rodi, D.; Buzzi, A.; Barbieri, M.; Zucchini, S.; Verlengia, G.; Binaschi, A.; Regoli, D.; Boschi, A.; Ongali, B.; Couture, R.; et al. Bradykinin B2 receptors increase hippocampal excitability and susceptibility to seizures in mice. Neuroscience 2013, 27, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Pysz, M.A.; Gambhir, S.S.; Willmann, J.K. Molecular Imaging: Current Status and Emerging Strategies. Clin. Radiol. 2010, 65, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Mankoff, D.A. A definition of molecular imaging. Newsline J. Nucl. Med. 2007, 48, 18N–21N. Available online: http://jnm.snmjournals.org/content/48/6/18N.long (accessed on 8 January 2019).
- Boschi, A.; Martini, P.; Uccelli, L. 188Re(V) nitrido radiopharmaceuticals for radionuclide therapy. Pharmaceuticals 2017, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Uccelli, L.; Martini, P.; Pasquali, M.; Boschi, A. Monoclonal antibodies radiolabeling with rhenium-188 for radioimmunotherapy (RIT). BioMed Res. Int. 2017, 5923609. [Google Scholar] [CrossRef]
- Herzog, H.; Rӧsch, F.; Stӧcklin, L.C.; Qaim, S.M.; Feinendegen, L.E. Measurement of Pharmacokinetics of Yttrium-86 Radiopharmaceuticals with PET and Radiation Dose Calculation of Analogous Yttrium-90 Radiotherapeutics. J. Nucl. Med. 1993, 34, 2222–2226. [Google Scholar] [PubMed]
- Yordanova, A.; Eppard, E.; Kürpig, S.; Bundschuh, R.A.; Schönberger, S.; Gonzalez-Carmona, M.; Feldmann, G.; Ahmadzadehfar, H.; Essler, M. Theranostics in nuclear medicine practice. Onco. Targets Ther. 2017, 10, 4821–4828. [Google Scholar] [CrossRef]
- National Nuclear Data Center (NNDC) Database 2.6. Available online: http://www.nndc.bnl.gov/nudat2/ (accessed on 21 November 2018).
- Smilkov, K.; Janevik, E.; Guerrini, R.; Pasquali, M.; Boschi, A.; Uccelli, L.; Di Domenico, G.; Duatti, A. Preparation and first biological evaluation of novel Re-188/Tc-99m peptide conjugates with substance-P. Appl. Radiat. Isot. 2014, 92, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Sivrastava, S.C. A Bridge not too Far: Personalized Medicine with the use of Theragnostic Radiopharmaceuticals. J. Postgrad. Med. 2013, 7, 31–46. [Google Scholar] [CrossRef]
- Kelkar, S.S.; Reineke, T.M. Theranostics: Combining Imaging and Therapy. Bioconj. Chem. 2011, 22, 1879–1903. [Google Scholar] [CrossRef] [PubMed]
- Martini, P.; Boschi, A.; Cicoria, G.; Zagni, F.; Corazza, A.; Uccelli, L.; Pasquali, M.; Pupillo, G.; Marengo, M.; Loriggiola, M.; et al. In-house cyclotron production of high-purity Tc-99m and Tc-99m radiopharmaceuticals. Appl. Radiat. Isot. 2018, 139, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Qaim, S.M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635–651. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods; IAEA Technical Report No. 468; International Atomic Energy Agency: Austria, Vienna, 2009; ISBN 978-92-0-106908-5. [Google Scholar]
- Cyclotrons Used for Radionuclide Production. Database of Cyclotrons for Radionuclide Production. Available online: https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx (accessed on 8 January 2019).
- Milton, B.F. Commercial Compact Cyclotrons in the 90’s. In Proceedings of the 14th International Conference on Cyclotrons and their Applications, Cape Town, South Africa, 8–13 October 1996. [Google Scholar]
- Schmor, P.W. Review of cyclotrons used in the production of radioisotopes for biomedical applications. In Proceedings of the CYCLOTRONS, Lanzhou, China, 6–10 September 2010; pp. 419–424. [Google Scholar]
- Synowiecki, M.A.; Perk, L.R.; Nijsen, J.F.W. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm. Chem. 2018, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misiak, R.; Walczak, R.; Was, B.; Bartyzel, M.; Mietelski, J.W.; Bilewicz, A. 47Sc Production development by cyclotron irradiation of 48Ca. J. Radioanal. Nucl. Chem. 2017, 313, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Oehlke, E.; Hoehr, C.; Hou, X.; Hanemaayer, V.; Zeisler, S.; Adam, M.J.; Ruth, T.J.; Celler, A.; Buckley, K.; Benard, F.; et al. Production of Y-86 and other radiometals for research purposes using a solution target system. Nucl. Med. Biol. 2015, 2, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Engelbrecht, H.P.; Byrne, J.P.; Packard, A.B.; DeGrado, T.R. Production of 89Zr via the 89Y(p, n)89Zr reaction in aqueous solution: Effect of solution composition on in-target chemistry. Nucl. Med. Biol. 2014, 41, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Degrado, T.R.; Byrne, J.P.; Packard, A.B.; Belanger, A.P.; Rangarajan, S.; Pandey, M.K. A solution target approach for cyclotron production of 89Zr: Understanding and coping in-target electrolysis. J. Label. Compd. 2011, 54, S248. [Google Scholar]
- Hoehr, C.; Oehlke, E.; Benard, F.; Lee, C.; Hou, X.; Badesso, B.; Ferguson, S.; Miao, Q.; Yang, H.; Buckley, K.; et al. 44gSc production using a water target on a 13 MeV cyclotron. Nucl. Med. Biol. 2014, 41, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunza, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; et al. Medical isotope production at TRIUMF—From imaging toTreatment. Phys. Procedia 2017, 90, 200–208. [Google Scholar] [CrossRef]
- Hoehr, C.; Morley, T.; Buckley, K.; Trinczek, M.; Hanemaayer, V.; Schaffer, P.; Ruth, T.; Benard, F. Radiometals from liquid targets: 94mTc production using a standard water target on a 13 MeV cyclotron. Appl. Radiat. Isot. 2012, 70, 2308–2312. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Byrne, J.P.; Jiang, H.; Packard, A.B.; Degrado, T.R. Cyclotron production of 68Ga via the 68Zn(p, n)68Ga reaction in aqueous solution. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 303–310. [Google Scholar] [PubMed]
- Alves, F.; Alves, V.H.P.; Do Carmo, S.J.C.; Neves, A.C.B.; Silva, M.; Abrunhosa, A.J. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod. Phys. Lett. A 2017, 32, 21. [Google Scholar] [CrossRef]
- Alves, V.H.; do Carmo, S.J.C.; Alves, F.; Abrunhosa, A.J. Automated Purification of Radiometals Produced by Liquid Targets. Instruments 2018, 2, 17. [Google Scholar] [CrossRef]
- Riga, S.; Cicoria, G.; Pancaldi, D.; Zagni, F.; Vichi, S.; Dassenno, M.; Mora, L.; Lodi, F.; Morigi, M.P.; Marengo, M. Production of Ga-68 with a General Electric PETtrace cyclotron by liquid Target. Phys. Medica 2018, 55, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Esposito, J.; Vecchi, G.; Pupillo, G.; Taibi, A.; Uccelli, L.; Boschi, A.; Gambaccini, M. Evaluation of 99Mo and 99mTc productions based on a high-performance cyclotron. Sci. Technol. Nucl. Ins. 2013, 2013, 972381. [Google Scholar] [CrossRef]
- Qaim, S.M. Nuclear data for production and medical application of radionuclides: Present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczak, R.; Pawlak, D.; Wojdowska, W.; Janiak, T.; Barcikowski, T.; Zoltowska, M.; Cieszykowska, I.; Parus, J.; Hajdu, I.; Baranyai, G.; et al. Cyclotron production of Sc-44 from natural calcium. J. Nucl. Med. 2018, 59 (Suppl. 1), 1043. [Google Scholar]
- Krajewski, S.; Cydzik, I.; Abbas, K.; Bulgheroni, A.; Simonelli, F.; Holzwarth, U.; Bilewicz, A. Cyclotron production of 44Sc for clinical application. Radiochim. Acta 2013, 101, 333–338. [Google Scholar] [CrossRef]
- Boschi, A.; Martini, P.; Janevik-Ivanovska, E.; Duatti, A. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov. Today 2018, 23, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Aboudzadeh, M.; Sadeghi, M.; Teymourlouy, A.a.; Rostampour, M. Assessment and estimation of 67Cu production yield via deuteron induced reactions on natZn and 70Zn. Appl. Radiat. Isot. 2017, 127, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Little, F.E.; Lagunas-Solar, M.C. Cyclotron production of 67Ga. Cross sections and thick-target yields for the 67Zn(p,n) and 68Zn(p,2n) reactions. Int. J. Appl. Radiat. Isot. 1983, 34, 631–637. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kakavand, T.; Rajabifar, S.; Mokhtari, M.; Rahimi-Nezhad, A. Cyclotron production of 68Ga via proton-induced reaction on 68Zn target. Nucleonika 2009, 54, 25–28. [Google Scholar]
- IAEA. Production of Long Lived Parent Radionuclides for Generators: 68Ge, 82Sr, 90Sr and 188W, IAEA Radioisotopes and Radiopharmaceuticals Series No. 2; International Atomic Energy Agency: Vienna, Austria, 2010; ISBN 978-92-0-101110-7. [Google Scholar]
- Sadeghi, M.; Aboudzadeh, M.; Zali, A.; Zeinali, B. 86Y production via 86Sr(p,n) for PET imaging at a cyclotron M. Appl. Radiat. Isot. 2009, 67, 1392–1396. [Google Scholar] [CrossRef] [PubMed]
- Kasbollah, A.; Eu, P.; Cowell, S.; Deb, P. Review on Production of 89Zr in a Medical Cyclotron for PET Radiopharmaceuticals. Nucl. Med. Technol. 2013, 41, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Uzunov, N.M.; Melendez-Alafort, L.; Bello, M.; Cicoria, G.; Zagni, F.; De Nardo, L.; Selva, A.; Mou, L.; Rossi-Alvarez, C.; Pupillo, G.; et al. Radioisotopic purity and imaging properties of cyclotron-produced 99mTc using direct 100Mo(p,2n) reaction. Phys. Med. Biol. 2018, 63, 185021. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, P.; Benard, F.; Bernstein, A.; Buckleya, K.; Cellerc, A.; Cockburne, N.; Corsaute, J.; Dodda, M.; Economouf, E.; Eriksson, T.; et al. Direct Production of Tc-99m via Mo-100(p,2n) on Small Medical Cyclotrons. Phys. Procedia 2015, 66, 383–395. [Google Scholar] [CrossRef]
- Chunfu, Z.; Yongxian, W.; Yongping, Z.; Xiuli, Z. Cyclotron production of no-carrier-added palladium-103 by bombardment of rhodium-103 target. Appl. Radiat. Isot. 2001, 55, 441–445. [Google Scholar] [CrossRef]
- IAEA. TECDOC-1512, Production techniques and quality control of sealed radioactive sources of palladium-103, iodine-125, iridium-192 and ytterbium-169; International Atomic Energy Agency: Vienna, Austria, 2006; ISBN 92-0-108606-7. [Google Scholar]
- Moustapha, M.E.; Ehrhardt, G.J.; Smith, C.J.; Szajek, L.P.; Eckelman, W.C.; Jurisson, S.S. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl. Med. Biol. 2006, 33, 81–89. [Google Scholar] [CrossRef]
- Chou, W.; Chao, A.W. Reviews Of Accelerator Science And Technology—Volume 4. In Accelerator Applications in Industry and The Environment, 1st ed.; World Scientific Publishing Co Pte Ltd.: Singapore, 2012; ISBN-10 9789814383981. [Google Scholar]
- Uccelli, L.; Pasquali, M.; Boschi, A.; Giganti, M.; Duatti, A. Automated preparation of Re-188 lipiodol for the treatment of hepatocellular carcinoma. Nucl. Med. Biol. 2011, 38, 207–213. [Google Scholar] [CrossRef]
- Boschi, S.; Lodi, F.; Malizia, C.; Cicoria, G.; Marengo, M. Automation synthesis modules review. Appl. Radiat. Isot. 2012. [Google Scholar] [CrossRef] [PubMed]
- Zaitseva, N.G.; Dmitriev, S.N. Radiochemical separation methods for preparation of biomedical cyclotron radionuclides. Czech. J. Phys. 1999, 49, 825–829. [Google Scholar] [CrossRef]
- IAEA. Cyclotron produced radionuclides: Principles and Practice; IAEA Technical Reports Series No. 465; IAEA: Vienna, Austria, 2008. [Google Scholar]
- Uccelli, L.; Boschi, A.; Cittanti, C.; Martini, P.; Lodi, L.; Zappaterra, E.; Romani, S.; Zaccaria, S.; Cecconi, D.; Rambaldi, I.; et al. Automated Synthesis of 68Ga-DOTA-TOC with a Cationic Purification System: Evaluation of Methodological and Technical Aspects in Routine Preparations. Curr. Radiopharm. 2018, 11, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, D.G.; Mausner, L.F.; Meinken, G.E.; Kurczak, S.O.; Schnakenberg, H.; Dodge, C.J.; Korach, E.M.; Srivastava, S.C. Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: Closing the 68Zn cycle. Appl. Radiat. Isot. 2012, 70, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Martini, P.; Boschi, A.; Cicoria, G.; Uccelli, L.; Pasquali, M.; Duatti, A.; Pupillo, G.; Marengo, M.; Loriggiola, M.; Esposito, J. A solvent-extraction module for cyclotron production of high-purity technetium-99m. Appl. Radiat. Isot. 2016, 118, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Boschi, A.; Martini, P.; Pasquali, M.; Uccelli, L. Recent achievements in Tc-99m radiopharmaceutical direct production by medical cyclotrons. Drug Dev. Ind. Pharm. 2017, 43, 1402–1412. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Das, S.S.; Barua, L. A simple and rapid technique for recovery of 99mTc from low specificactivity 98Mo(n,γ)99Mo based on solvent extraction and column chromatography. Appl. Radiat. Isot. 2010, 68. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Barua, L.; De, A.; Das Saha, S.; Kuniyil, R.; Bhaskar, P.; Pal Shekhar, S.; Sarkar, S.K.; Das Kanti, M. A computerized compact module for separation of 99mTc-radionuclide from molybdenum. Appl. Radiat. Isot. 2012, 70, 2631. [Google Scholar] [CrossRef]
- Capogni, M.; Pietropaolo, A.; Quintieri, L.; Angelone, M.; Boschi, A.; Capone, M.; Cherubini, N.; De Felice, P.; Dodaro, A.; Duatti, A. 14 MeV Neutrons for 99Mo/99mTc Production: Experiments, Simulations and Perspectives. Molecules 2018, 23, 1872. [Google Scholar] [CrossRef]
- Uccelli, L.; Boschi, A.; Martini, P.; Cittanti, C.; Bertelli, S.; Bortolotti, D.; Govoni, E.; Lodi, L.; Romani, S.; Zaccaria, S.; et al. Influence of Storage Temperature on Radiochemical Purity of 99mTc-Radiopharmaceuticals. Molecules 2018, 23, 661. [Google Scholar] [CrossRef]
- Uccelli, L.; Martini, P.; Pasquali, M.; Boschi, A. Radiochemical purity and stability of 99mTc-HMPAO in routine preparations. J. Radioanal. Nucl. Chem. 2017, 314, 1177–1181. [Google Scholar] [CrossRef]
- Asti, M.; De Pietri, G.; Fraternali, A.; Grassi, E.; Sghedoni, R.; Fioroni, F.; Roesch, F.; Versari, A.; Salvo, D. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC. Nucl. Med. Biol. 2008, 5, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.; Ballinger, J.R.; Behe, M.; Decristoforo, C.; Elsinga, f.P.H.; Faivre-Chauvet, g.A.; Mindt, T.L.; Kolenc Peitl, P.; Todde, S.C.; Koziorowskik, J. Guidance on current good radiopharmacy practice for the small-scale preparation of radiopharmaceuticals using automated modules: A European perspective. Protocols Methods J. Label Compd. Radiopharm. 2014, 57, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, K.; Wilson, J.S.; Holt, C.M.; Abrams, D.N.; McEwan, A.J.; Mitlin, D.; McQuarrie, S.A. Cyclotron production of Tc-99m: Recycling of enriched Mo-100 metal targets. Appl. Radiat. Isot. 2012, 70, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Matarrese, M.; Bedeschi, P.; Scardaoni, R.; Sudati, F.; Savi, A.; Pepe, A.; Masiello, V.; Todde, S.; Gianolli, L.; Messa, C.; et al. Automated production of copper radioisotopes and preparation of high specific activity [(64)Cu]Cu-ATSM for PET studies. Appl. Radiat. Isot. 2010, 68, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Mausner, L.F.; Srivastava, S.C. Selection of radionuclides for radioimmunotherapy. Med. Phys. 1993, 20, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Kolsky, K.L.; Joshi, V.; Mausner, L.F.; Srivastava, S.C. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl. Radiat. Isot. 1998, 49, 1541–1549. [Google Scholar] [CrossRef]
- Minegishi, K.; Nagatsu, K.; Fukada, M.; Suzuki, H.; Ohya, T.; Zhang, M.-R. Production of scandium-43 and-47 from a powdery calcium oxide target via the nat/44Ca(α,x)-channel. Appl. Radiat. Isotop. 2016, 116, 8–12. [Google Scholar] [CrossRef]
- Khandaker, M.U.; Kim, K.; Lee, M.W.; Kim, K.S.; Kim, G.N.; Cho, Y.S.; Lee, Y.O. Investigations of the natTi(p,x)43,44m,44g,46,47,48Sc,48V nuclear processes up to 40 MeV. Appl. Radiat. Isot. 2009, 67, 1348–1354. [Google Scholar] [CrossRef]
- Pietrelli, L.; Mausner, L.F.; Kolsky, K.L. Separation of carrier free 47Sc from titanium targets. J. Radioanal. Nucl. Chem. 1992, 157, 335–345. [Google Scholar] [CrossRef]
- Domnanich, K.A.; Eichler, R.; Müller, C.; Jordi, S.; Yakusheva, V.; Braccini, S.; Behe, M.; Schibli, R.; Türler, A.; van der Meulen, N.P. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharm. Chem. 2017, 2, 14. [Google Scholar] [CrossRef]
- Barto´s, B.; Majkowska, A.; Kasperek, A.; Krajewski, S.; Bilewicz, A. New separation method of no-carrier-added 47Sc from titanium Targets. Radiochim. Acta 2012, 100, 457–461. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N. Distribution coefficients of 60 elements on TODGA resin: Application to ca, Lu, Hf, U and Th isotope geochemistry. Talanta 2010, 81, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Esposito, J.; Bettoni, D.; Boschi, A.; Calderolla, M.; Cisternino, S.; Fiorentini, G.; Keppel, G.; Martini, P.; Maggiore, M.; Mou, L.; et al. LARAMED: A Laboratory for Radioisotopes of Medical Interest. Molecules 2019, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Van der Meulen, N.P.; Bunka, M.; Domnanich, K.A.; Müller, C.; Haller, S.; Vermeulen, C.; Türler, A.; Schibli, R. Cyclotron production of 44Sc: From bench to bedside. Nucl. Med. Biol. 2015, 42, 745–751. [Google Scholar] [CrossRef] [PubMed]
radionuclide | Life-time | Nuclear Reaction | Application |
---|---|---|---|
61Cu | 3.33 h | 64Zn(p,α) | PET |
64Cu | 12.7 h | 64Ni(p,n) | PET |
67Cu | 61.9 h | 68Zn(p,2p) | Therapy/SPECT |
67Ga | 78.3 h | 68Zn(p,2p) | SPECT |
68Ga | 68 min | 69Ga(p,2n)68Ge → 68Ga | PET |
82mRb | 5 min | 85Rb(p,4n) 82Sr → 82mRb | PET |
44Sc | 3.97 h | 44Ca(p,n) | PET |
47Sc | 79.2 h | 47Ti(n,p) 48Ca(p,2n) | Therapy/SPECT |
99mTc | 6h | 100Mo(p,2n) | SPECT |
86Y | 14.7 | 86Sr(p,n) | PET |
103Pd | 17.5 d | 103Rh(p,n) | Therapy |
111In | 67.2 h | 112Cd(p,2n) | SPECT |
186Re | 90.6 h | 186W(p,n) | Therapy/SPECT |
201Tl | 73.5 h | 203Tl(p,3n)201Pb → 201Tl | SPECT |
89Zr | 78.4 h | 89Y(p,n)89Zr | PET |
Radionuclide | Target Type | Chemical form of the Target | References |
---|---|---|---|
44Sc | solid | Metallic calcium pellets, 44CaCO3 powder | [33,34] |
liquid | 44Ca(NO3)2x·4H2O solution | [24] | |
64Cu | solid | 64Ni(95% enrich.) | [35] |
liquid | 64Ni(NO3)2x·6H2O solution | [29] | |
67Cu | solid | s68Zn, natZn, 70Zn metal; ZnO | [29,36] |
67Ga | solid | 68Zn, natZn, 67Zn metal | [37] |
68Ga | solid | 68Zn metallic | [19,38] |
liquid | 68Zn(NO3)2x·6H2O solution | [21,28,30] | |
82Sr | solid | natRbCl or natRb metal | [39] |
86Y | solid | natSrCO3 | [40] |
liquid | natSr(NO3)2 solution | [21] | |
89Zr | solid | 89Y foil, pellets, Y2O3 | [41] |
liquid | natY(NO3)3 · 6H2O solution | [21] | |
99mTc | solid | 100Mo metal | [13,42,43] |
103Pd | solid | 103Rh metal foil | [44,45] |
111In | solid | natCd, enriched 112Cd or natAg | [15] |
186Re | solid | 186WO3 | [46,47] |
201Tl | solid | 203Tl metal | [15] |
203Pb | solid | natTl, 205Tl metal | [15] |
Direct Production | Indirect Production |
---|---|
48Ca(p,2n)47Sc | 48Ca(p,x)47Ca → 47Sc |
46Ca(α,p)47Sc | 46Ca(n,γ)47Ca → 47Sc |
47Ti(n,p)47Sc | |
48Ti(p,2p)47Sc | |
49Ti(p,x)47Sc | 49Ti(p,3p)47Ca → 47Sc |
50Ti(p,x)47Sc | 50Ti(p,x)47Ca → 47Sc |
natV(p,x)47Sc |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boschi, A.; Martini, P.; Costa, V.; Pagnoni, A.; Uccelli, L. Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example. Molecules 2019, 24, 444. https://doi.org/10.3390/molecules24030444
Boschi A, Martini P, Costa V, Pagnoni A, Uccelli L. Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example. Molecules. 2019; 24(3):444. https://doi.org/10.3390/molecules24030444
Chicago/Turabian StyleBoschi, Alessandra, Petra Martini, Valentina Costa, Antonella Pagnoni, and Licia Uccelli. 2019. "Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example" Molecules 24, no. 3: 444. https://doi.org/10.3390/molecules24030444
APA StyleBoschi, A., Martini, P., Costa, V., Pagnoni, A., & Uccelli, L. (2019). Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example. Molecules, 24(3), 444. https://doi.org/10.3390/molecules24030444