Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L.
Abstract
:1. Introduction
2. Results and Discussions
2.1. Composition of the Essential Oils and Their Combination
2.2. PCA and HCA Analyses of the Essential Oils and Their Combinations
2.3. Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Extraction and Their Mix Preparation
3.3. GC-MS Analysis of EOs
3.4. Antioxidant Activity
3.4.1. Evaluation of Radical Scavenging Activity by ABTS and DPPH Assay
3.4.2. Ferric Reducing Ability Power (FRAP Assay)
3.4.3. Carotene Bleaching Test
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Swingle, W.T.; Reece, P.C.; Reuther, W.; Webber, H.J.; Batchelor, L.D. The Citrus Industry; University of California Press: Berkeley, CA, USA, 1967; pp. 190–430. [Google Scholar]
- Ferrer, V.; Costantino, G.; Paoli, M.; Paymal, N.; Quinton, C.; Ollitrault, P.; Tomi, F.; Luro, F. Intercultivar diversity of sour orange (Citrus aurantium L.) based on genetic markers, phenotypic characteristics, aromatic compounds and sensorial analysis. Agronomy 2021, 11, 1084. [Google Scholar] [CrossRef]
- Cerdagne, I. L’Oranger Amer: Citrus aurantium var. amara Link. Ph.D. Thesis, University of Limoges, Limoges, France, 2004; p. 218. [Google Scholar]
- Wu, G.A.; Prochnik, S.; Jenkins, J.; Salse, J.; Hellsten, U.; Murat, F.; Perrier, X.; Ruiz, M.; Scalabrin, S.; Terol, J.; et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during Citrus domestication. Nat. Biotechnol. 2014, 32, 656–662. [Google Scholar] [CrossRef] [PubMed]
- USDA Foreign Agricultural Service 2017. Available online: https://www.fas.usda.gov (accessed on 15 January 2022).
- Mamma, D.; Christakopoulos, P. Biotransformation of Citrus by-products into value added products. Waste Biomass Valoriz. 2014, 5, 529–549. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Suntar, I.; Khan, H.; Patel, S.; Celano, R.; Rastrelli, L. An overview on Citrus aurantium L. Its functions as food ingredient and therapeutic agent. Oxidative Med. Cell. Longev. 2018, 2018, 7864269. [Google Scholar] [CrossRef] [Green Version]
- Bonesi, M.; Loizzo, M.R.; Leporini, M.; Tenuta, M.C.; Passalacqua, N.G.; Tundis, R. Comparative evaluation of petitgrain oils from six Citrus species alone and in combination as potential functional anti-radicals and antioxidant agents. Plant Biosyst. 2018, 152, 986–993. [Google Scholar] [CrossRef]
- Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A.; Cirmi, S.; Navarra, M. The second life of Citrus fruit waste: A valuable source of bioactive compounds. Molecules 2021, 26, 5991. [Google Scholar] [CrossRef]
- Nieto, G.; Fernández-López, J.; Pérez-Álvarez, J.A.; Peñalver, R.; Ros-Berruezo, G.; Viuda-Martos, M. Valorization of Citrus co-products: Recovery of bioactive compounds and application in meat and meat products. Plants 2021, 10, 1069. [Google Scholar] [CrossRef]
- Hosni, K.; Zahed, N.; Chrif, R.; Abid, I.; Madfei, W.; Kallel, M.; Ben Brahim, N.; Sebei, H. Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chem. 2010, 123, 1098–1104. [Google Scholar] [CrossRef]
- Hosni, K.; Hassen, I.; M’Rabet, Y.; Sebei, H.; Casabianca, H. Genetic relationships between some Tunisian Citrus species based on their leaf volatile oil constituents. Biochem. System. Ecol. 2013, 50, 65–71. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, H.; Therios, I. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece. Molecules 2013, 18, 10639–10647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.H.; Yang, L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Comparative GC/MS analysis of essential oils extracted by 3 methods from the bud of Citrus aurantium L. var. amara Engl. J. Food Sci. 2011, 76, C1219–C1225. [Google Scholar] [CrossRef]
- Kirbaslar, F.G.; Kirbaslar, S.I. Composition of cold-pressed bitter orange peel oil from Turkey. J. Essent. Oil Res. 2003, 15, 6–9. [Google Scholar] [CrossRef]
- Radan, M.; Parcina, A.; Burkul, F. Chemical composition and antioxidant activity of essential oil obtained from bitter orange peel (Citrus aurantium L.) using two methods. Croat. Chem. Acta 2018, 91, 125–128. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Hamdi, N.; Ben Halima, N.; Abdelkafi, S. Characterization of essential oil of Citrus aurantium L. flowers: Antimicrobial and antioxidant activities. J. Oleo Sci. 2013, 62, 763–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellouze, I.; Abderrabba, M.; Sabaou, N.; Mathieu, F.; Lebrihi, A.; Bouajila, J. Season’s variation impact on Citrus aurantium leaves essential oil: Chemical composition and biological activities. J. Food Sci. 2012, 77, T173–T180. [Google Scholar] [CrossRef]
- Maksoud, S.; Abdel-Massih, R.M.; Rajha, H.N.; Louka, N.; Chemat, F.; Barba, F.J.; Debs, E. Citrus aurantium L. active constituents, biological effects and extraction methods. an updated review. Molecules 2021, 26, 5832. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Biological activities and safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [Green Version]
- de Moraes Pultrini, A.; Almeida Galindo, L.; Costa, M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci. 2006, 78, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Narang, N.; Jiraungkoorskul, W. Anticancer Activity of Key Lime, Citrus aurantifolia. Pharmacogn. Rev. 2016, 10, 118–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, T.M.; Kushima, H.; Moleiro, F.C.; Santos, R.C.; Machado Rocha, L.R.; Marques, M.O.; Vilegas, W.; Hiruma-Lima, C.A. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. Chem. Biol. Interact. 2009, 180, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Fugh-Berman, A.; Myers, A. Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Exp. Biol. Med. 2004, 229, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Wanasundara, P.K. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Boussaada, O.; Chemli, R. Seasonal variation of essential oil composition of Citrus aurantium L. var. amara. J. Ess. Oil Bear. Plants 2007, 10, 109–120. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: Changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. J. Food Measur. Charact. 2020, 14, 862–875. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Colica, C.; Menichini, F. Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. Peel essential oils. J. Food Sci. 2012, 77, 40–46. [Google Scholar] [CrossRef]
- Abderrezak, M.; Abaza, I.; Aburjai, T.; Kabouche, A.; Kabouche, Z. Comparative compositions of essential oils of Citrus aurantium growing in different soils. J. Mat. Environ. Sci. 2014, 5, 1913–1918. [Google Scholar]
- Lu, Q.; Huang, N.; Peng, Y.; Zhu, C.; Pan, S. Peel oils from three Citrus species: Volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci. Technol. 2019, 56, 4492–4502. [Google Scholar] [CrossRef]
- Kamal, G.M.; Ashraf, M.; Hussain, A.; Shahzadi, A.; Chughtai, M.I. Antioxidant potential of peel essential oils of three Pakistani Citrus species: Citrus reticulata, Citrus sinensis and Citrus paradisii. Pakistan J. Bot. 2013, 45, 1449–1454. [Google Scholar]
- Shah, B.; Mehta, A. In vitro evaluation of antioxidant activity of d-limonene. Asian J. Pharm. Pharmacol. 2018, 4, 883–887. [Google Scholar] [CrossRef]
- Riccobono, V. Monografia delle specie e varietà di agrumi coltivate nel R. Orto Botanico di Palermo. Boll. R. Orto Bot. Di Palermo 1899, 3, 141–189. [Google Scholar]
- Lombardo, G.; Schicchi, R.; Marino, P.; Palla, F. Genetic analysis of Citrus aurantium L. (Rutaceae) cultivars by ISSR molecular markers. Plant Biosyst. 2012, 146, 19–26. [Google Scholar] [CrossRef]
- Frank, M.H.; Chitwood, D.H. Plant chimeras: The good, the bad, and the ‘Bizzaria’. Develop. Biol. 2016, 419, 41–53. [Google Scholar] [CrossRef]
- Catinella, G.; Badalamenti, N.; Ilardi, V.; Rosselli, S.; De Martino, L.; Bruno, M. The essential oil compositions of three Teucrium taxa growing wild in Sicily: HCA and PCA analyses. Molecules 2021, 26, 643. [Google Scholar] [CrossRef]
- Council of Europe (EDQM). European Pharmacopoeia, 6th ed.; EDQM: Strasbourg, France, 2008. [Google Scholar]
- Basile, S.; Badalamenti, N.; Riccobono, O.; Guarino, S.; Ilardi, V.; Bruno, M.; Peri, E. Chemical composition and evaluation of insecticidal activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against stored products pests. Molecules 2022, 27, 588. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Loizzo, M.R.; Tundis, R.; Leporini, M.; D’Urso, G.; Gagliano Candela, R.; Falco, T.; Piacente, S.; Bruno, M.; Sottile, F. Almond (Prunus dulcis cv. Casteltermini) skin confectionery by-products: New opportunity for the development of a functional blackberry (Rubus ulmifolius Schott) jam. Antioxidants 2021, 10, 1218. [Google Scholar] [CrossRef]
- Leeuw, R.W.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Comp. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Bancheva, S.; Badalamenti, N.; Bruno, M. The essential oil composition of the endemic plant species Centaurea vandasii and chemotaxonomy of section Phalolepis (Asteraceae). Nat. Prod. Res. 2021, in press. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2006. [Google Scholar]
- Ambrosio, C.M.S.; Diaz-Arenas, G.L.; Agudelo, L.P.A.; Stashenko, E.; Contreras-Castillo, C.J.; da Gloria, E.M. Chemical Composition and Antibacterial and Antioxidant Activity of a Citrus Essential Oil and Its Fractions. Molecules 2021, 26, 2888. [Google Scholar] [CrossRef] [PubMed]
Content (%) C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Compounds | LRIexp A | LRIlit B | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Ident. D | Sign. E |
1 | α-Pinene | 936 | 934 | 2.98 a | 2.57 c | - | 2.69 b | 1.67 d | 3.01 a | 1.49 e | 1, 2, 3 | ** |
2 | β-Pinene | 977 | 981 | 3.33 a | - | 0.91 d | 2.71 b | - | 2.73 b | 1.58 c | 1, 2, 3 | ** |
3 | β-Myrcene | 990 | 994 | 2.76 d | 7.52 a | 1.95 f | 2.04 e | 5.61 b | 1.00 | 4.13 c | 1, 2, 3 | ** |
4 | n-Octanal | 1001 | 1005 | 3.77 a | - | - | 1.35 b | - | - | - | 1, 2 | ** |
5 | d-limonene | 1031 | 1028 | 77.53 d | 80.50 c | 33.35 f | 76.00 e | 82.78 b | 76.06 e | 89.17 a | 1, 2, 3 | ** |
6 | β-cis-Ocimene | 1038 | 1036 | - | 1.45 a | - | 0.92 d | - | 1.18 c | 1.04 b | 1, 2 | ** |
7 | n-Octanol | 1070 | 1078 | - | - | 1.59 a | - | - | - | - | 1, 2, 3 | ** |
8 | β-Linalool | 1098 | 1101 | 2.58 c | 1.04 f | 7.69 a | 2.67 b | 1.89 e | 2.31 d | 1.03 f | 1, 2 | ** |
9 | α-Terpineol | 1189 | 1194 | - | - | 7.06 a | 1.08 c | 0.91 d | 1.17 b | - | 1, 2 | ** |
10 | n-Decanal | 1203 | 1208 | 2.07 a | - | - | - | - | - | - | 1, 2 | ** |
11 | cis-Geraniol | 1229 | 1235 | - | - | 1.63 a | - | - | - | - | 1, 2 | ** |
12 | β-Citral | 1238 | 1242 | - | - | 1.88 a | - | - | - | - | 1, 2 | ** |
13 | Bergamol | 1256 | 1258 | - | 1.46 d | 6.77 a | 3.55 c | 1.43 d | 4.33 b | - | 1, 2 | ** |
14 | trans-Geraniol | 1259 | 1267 | - | - | 3.36 a | - | - | - | - | 1, 2 | ** |
15 | Neryl Acetate | 1365 | 1366 | - | - | 6.28 a | - | - | - | - | 1, 2 | ** |
16 | Geranyl Acetate | 1386 | 1392 | - | - | 10.12 a | 1.41 c | - | 1.51 d | - | 1, 2 | ** |
17 | n-Decyl Acetate | 1402 | 1406 | - | - | 1.44 a | - | - | - | - | 1, 2 | ** |
18 | Caryophyllene | 1419 | 1423 | - | - | 1.00 a | - | - | - | - | 1, 2, 3 | ** |
19 | Germacrene D | 1480 | 1485 | - | - | 3.48 a | - | - | - | - | 1, 2 | ** |
20 | trans-Nerolidol | 1550 | 1554 | - | - | 4.57 a | - | - | - | - | 1, 2 | ** |
Monoterpene Hydrocarbons | 86.60 | 92.04 | 36.21 | 84.36 | 90.06 | 84.52 | 97.41 | |||||
Oxygenated Monoterpenes | 2.58 | 2.50 | 44.79 | 8.71 | 4.23 | 9.32 | 1.03 | |||||
Sesquiterpene Hydrocarbons | - | - | 4.48 | - | - | - | - | |||||
Oxygenated Sesquiterpenes | - | - | 4.57 | - | - | - | - | |||||
Others | 5.84 | - | 3.03 | 1.35 | - | - | - | |||||
Total | 95.02 | 94.54 | 93.08 | 94.42 | 94.29 | 93.84 | 98.44 |
DPPH (IC50 μg/mL) | ABTS (IC50 μg/mL) | β-Carotene Bleaching Test (IC50 μg/mL) | FRAP μM Fe2+/g | |
---|---|---|---|---|
C. aurantium EO | ||||
C1 | 38.39 ± 2.12 g | 25.31 ± 2.66 a | 38.61 ± 3.54 n | 20.62 ± 2.36 n |
C2 | 33.01 ± 1.71 c | 30.14 ± 2.27 d | 22.68 ± 2.16 g | 28.23 ± 4.12 h |
C3 | 40.18 ± 2.82 i | 36.22 ± 2.42 j | 55.72 ± 3.87 v | 55.92 ± 2.92 a |
C4 | 33.98 ± 2.00 c | 27.45 ± 1.85 b | 15.46 ± 1.31 b | 44.44 ± 3.66 d |
C5 | 39.01 ± 2.74 h | 29.56 ± 2.93 c | 48.73 ± 2.64 q | 50.23 ± 3.41 b |
C6 | 37.93 ± 2.54 f | 27.38 ± 1.77 b | 18.56 ± 1.56 d | 20.65 ± 1.78 n |
C7 | 40.74 ± 3.18 i | 32.32 ± 2.72 f | 49.68 ± 2.93 r | 45.44 ± 2.45 c |
EOs Combination (1:1 v/v) | ||||
C1C2 | 36.12 ± 1.81 e | 38.39 ± 2.75 l | 57.28 ± 3.41 z | 19.98 ± 1.98 o |
C1C3 | 42.09 ± 2.48 k | 33.01 ± 2.84 g | 25.77 ± 2.58 j | 21.72 ± 1.92 m |
C1C4 | 31.75 ± 2.33 a | 40.18 ± 3.01 n | 50.63 ± 3.67 s | 23.08 ± 2.01 k |
C1C5 | 32.64 ± 2.54 b | 33.98 ± 2.52 g | 31.96 ± 2.73 k | 27.18 ± 2.23 i |
C1C6 | 31.05 ± 2.25 a | 39.01 ± 2.96 m | 53.82 ± 3.86 | 20.73 ± 2.14 m |
C1C7 | 31.44 ± 2.63 a | 37.93 ± 2.84 kl | 13.42 ± 2.24 a | 22.60 ± 2.35 l |
C2C3 | 37.16 ± 2.85 f | 39.42 ± 2.73 | 41.14 ± 3.72 p | 22.04 ± 2.32 l |
C2C4 | 34.60 ± 2.16 d | 35.16 ± 2.4 i | 24.12 ± 1.94 i | 23.49 ± 2.41 k |
C2C5 | 38.49 ± 2.92 g | 36.85 ± 2.64 j | 37.66 ± 2.57 m | 24.26 ± 2.66 j |
C2C6 | 38.68 ± 2.73 g | 33.98 ± 2.25 g | 17.53 ± 2.01 c | 22.55 ± 2.47 l |
C2C7 | 37.60 ± 2.77 f | 38.13 ± 2.74 l | 25.95 ± 2.43 j | 23.14 ± 2.52 k |
C3C4 | 41.96 ± 3.24 j | 46.23 ± 3.88 o | 22.68 ± 2.52 g | 22.91 ± 2.36 l |
C3C5 | 33.91 ± 2.45 c | 37.16 ± 3.57 k | 55.06 ± 3.04 v | 22.71 ± 2.2 l |
C3C6 | 31.86 ± 2.24 a | 33.08 ± 2.35 g | 36.08 ± 2.86 l | 23.11 ± 2.31 k |
C3C7 | 36.37 ± 2.57 e | 31.40 ± 2.49 e | 37.41 ± 2.97 m | 23.19 ± 2.47 k |
C4C5 | 34.38 ± 2.35 d | 36.22 ± 2.71 j | 23.54 ± 2.03 h | 29.61 ± 3.05 g |
C4C6 | 37.16 ± 2.76 f | 34.68 ± 2.52 h | 57.72 ± 3.81 z | 30.95 ± 3.16 f |
C4C7 | 34.60 ± 2.40 d | 38.51 ± 2.73 l | 19.54 ± 1.61 e | 27.23 ± 2.42 i |
C5C6 | 38.49 ± 3.48 g | 38.34 ± 2.65 l | 54.86 ± 3.33 u | 28.06 ± 2.77 h |
C5C7 | 38.68 ± 3.39 g | 31.12 ± 2.44 e | 21.64 ± 1.57 f | 30.97 ± 3.26 f |
C6C7 | 37.60 ± 2.98 f | 34.30 ± 2.25 h | 51.23 ± 3.58 t | 30.14 ± 3.01 f |
C1 + C2 + C3 + C4 + C5 + C6 + C7 | 44.96 ± 3.70 l | 39.23 ± 2.73 m | 40.21 ± 3.29 o | 38.06 ± 3.54 e |
Sign | ** | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badalamenti, N.; Bruno, M.; Schicchi, R.; Geraci, A.; Leporini, M.; Gervasi, L.; Tundis, R.; Loizzo, M.R. Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L. Molecules 2022, 27, 1580. https://doi.org/10.3390/molecules27051580
Badalamenti N, Bruno M, Schicchi R, Geraci A, Leporini M, Gervasi L, Tundis R, Loizzo MR. Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L. Molecules. 2022; 27(5):1580. https://doi.org/10.3390/molecules27051580
Chicago/Turabian StyleBadalamenti, Natale, Maurizio Bruno, Rosario Schicchi, Anna Geraci, Mariarosaria Leporini, Luigia Gervasi, Rosa Tundis, and Monica Rosa Loizzo. 2022. "Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L." Molecules 27, no. 5: 1580. https://doi.org/10.3390/molecules27051580
APA StyleBadalamenti, N., Bruno, M., Schicchi, R., Geraci, A., Leporini, M., Gervasi, L., Tundis, R., & Loizzo, M. R. (2022). Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L. Molecules, 27(5), 1580. https://doi.org/10.3390/molecules27051580