Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials
Abstract
:1. Introduction
2. Spinal Cord Injury
3. Spinal Cord Injury and Stem Cells therapy
4. Stem Cells therapy in Spinal Cord Injury in Human
4.1. Completed Clinical Trials
4.1.1. Bone Marrow Mesenchymal Stem Cells
4.1.2. Bone Marrow Mesenchymal Stem Cells versus Adipose Tissue-Derived Mesenchymal Stem Cells
4.1.3. Adipose Tissue-Derived Mesenchymal Stem Cells
4.1.4. Umbilical Cord Mesenchymal Stem Cells
4.1.5. Neuronal Stem Cells
4.2. Ongoing Clinical Trials
4.2.1. Umbilical Cord Mesenchymal Stem Cells
4.2.2. Adipose Tissue-Derived Mesenchymal Stem Cells
4.2.3. Bone Marrow Mesenchymal Stem Cells
4.2.4. Neuronal Stem Cells
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SCI | Spinal Cord Injury |
MSCs | Mesenchymal Stem Cells |
TNF-α | Tumor Necrosis Factor-alpha |
IL-1β | Interleukin 1-beta |
IL-6 | Interleukin-6 |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
MPSS | Methylprednisolone Sodium Succinate |
BM-MSCs | Bone Marrow MSCs |
AT-MSCs | Adipose Tissue-derived MSCs |
UC-MSCs | Umbilical Cord MSCs |
BDNF | Brain-Derived Neurotrophic Factor |
GDNF | Glial cell-Derived Neurotrophic Factor |
IGF-1 | Insulin Grow Factors-1 |
OPCs | Oligodendrocytes Progenitor Cells |
hESC | Human Embryonic Stem Cell |
CNS | Central Nervous System |
VEGF | Vascular Endothelial Growth Factor |
NGF | Nerve Growth Factor |
NT-3 | Neurotrophin-3 |
FGF | Fibroblast Growth Factor |
EGF | Epidermal Growth Factor |
TGF-β | Transforming Growth Factor-beta |
WJ-MSCs | Wharton’s Jelly MSCs |
ASIA | American Spinal Injury Association |
AIS | Association Impairment Scale |
MRI | Magnetic Resonance Image |
SSEP | Somatosensory Evoked Potentials |
IANR-SCIFRS | International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale |
BMPCs | Bone Marrow Progenitor Cells |
CNS-SCs | CNS Stem Cells |
CT | Computerized Tomography |
References
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- National Spinal Cord Injury Statistical Center. Facts and Figures at a Glance; University of Alabama at Birmingham: Birmingham, AL, USA, 2016; pp. 1–2. [Google Scholar]
- McKinley, W.O.; Seel, R.T.; Hardman, J.T. Nontraumatic spinal cord injury: Incidence, epidemiology, and functional outcome. Arch. Phys. Med. Rehab. 1999, 80, 619–623. [Google Scholar] [CrossRef]
- Eckert, M.J.; Martin, M.J. Trauma: Spinal cord injury. Surg. Clin. 2017, 97, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Choo, A.M.; Liu, J.; Dvorak, M.; Tetzlaff, W.; Oxland, T.R. Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp. Neurol. 2008, 212, 490–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yin, Y.; Xu, S.J.; Wu, Y.P.; Chen, W.S. Inflammation & apoptosis in spinal cord injury. Indian J. Med. Res. 2012, 135, 287–296. [Google Scholar]
- Hausmann, O. Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003, 41, 369. [Google Scholar] [CrossRef]
- Singh, P.L.; Agarwal, N.; Barrese, J.C.; Heary, R.F. Current therapeutic strategies for inflammation following traumatic spinal cord injury. Neural Regen. Res. 2012, 7, 1812–1821. [Google Scholar]
- Dasari, V.R.; Veeravalli, K.K.; Dinh, D.H. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J. Stem Cells 2014, 6, 120–133. [Google Scholar] [CrossRef]
- Phinney, D.G.; Prockop, D.J. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair—Current views. Stem Cells 2007, 25, 2896–2902. [Google Scholar] [CrossRef]
- Parr, A.M.; Tator, C.H.; Keating, A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Trans. 2007, 40, 609–619. [Google Scholar] [CrossRef]
- Oliveri, R.S.; Bello, S.; Biering-Sorensen, F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol. Dis. 2014, 62, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Salami, F.; Tavassoli, A.; Mehrzad, J.; Parham, A. Immunomodulatory effects of mesenchymal stem cells on leukocytes with emphasis on neutrophils. Immunobiology 2018, 223, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Augello, A.; Tasso, R.; Negrini, S.M.; Amateis, A.; Indiveri, F.; Cancedda, R.; Pennesi, G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol. 2005, 35, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.A.; Sousa, N.; Reis, R.L.; Salgado, A.J. From basics to clinical: A comprehensive review on spinal cord injury. Progress Neurobiol. 2014, 114, 25–57. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Houghtling, R.A.; MacArthur, L.; Bayer, B.M.; Bregman, B.S. Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp. Neurol. 2003, 184, 313–325. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Nori, S.; Tetreault, L.; Wilson, J.; Kwon, B.; Harrop, J.; Choi, D.; Fehlings, M.G. Traumatic spinal cord injury-repair and regeneration. Neurosurgery 2017, 80, S9–S22. [Google Scholar] [CrossRef]
- Sugawara, T.; Chan, P.H. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Sign. 2003, 5, 597–607. [Google Scholar] [CrossRef]
- Park, E.; Velumian, A.A.; Fehlings, M.G. The role of excitotoxicity in secondary mechanisms of spinal cord injury: A review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 2004, 21, 754–774. [Google Scholar] [CrossRef]
- Rowland, J.W.; Hawryluk, G.W.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef]
- Zweckberger, K.; Ahuja, C.S.; Liu, Y.; Wang, J.; Fehlings, M.G. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury. Acta Biomater. 2016, 42, 77–89. [Google Scholar] [CrossRef]
- Donnelly, D.J.; Popovich, P.G. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 2008, 209, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, B.C.; Hadley, M.N.; Hurlbert, R.J.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Harrigan, M.R.; Rozelle, C.J.; Ryken, T.C.; Theodore, N. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery 2013, 60, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Perrin, R.G. The role and timing of early decompression for cervical spinal cord injury: Update with a review of recent clinical evidence. Injury 2005, 36, S13–S26. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, P.E.; Wills, T.E.; Skeers, P.; Battistuzzo, C.R.; Macleod, M.R.; Howells, D.W.; Sena, E.S. Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: A battle of time and pressure. PLoS ONE 2013, 8, e72659. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.; McCormack, O.; McCormack, D.; O’Byrne, J.; Stephens, M.; McManus, F.; Walsh, M. Methylprednisolone in acute spinal cord injuries—An audit of administration: Session 10 orthopaedic 1. Irish J. Med. Sci. 2002, 171, 60. [Google Scholar] [CrossRef]
- Liu, W.L.; Lee, Y.H.; Tsai, S.Y.; Hsu, C.Y.; Sun, Y.Y.; Yang, L.Y.; Tsai, S.H.; Yang, W.C.V. Methylprednisolone inhibits the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans in reactivated astrocytes. Glia 2008, 56, 1390–1400. [Google Scholar] [CrossRef]
- Rolls, A.; Shechter, R.; Schwartz, M. The bright side of the glial scar in cns repair. Nat. Rev. Neurosci. 2009, 10, 235. [Google Scholar] [CrossRef]
- Bracken, M.B. Steroids for acute spinal cord injury. Cochrane Database Syst. Rev. 2012, 1. [Google Scholar] [CrossRef]
- Park, H.C.; Shim, Y.S.; Ha, Y.; Yoon, S.H.; Park, S.R.; Choi, B.H.; Park, H.S. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005, 11, 913–922. [Google Scholar] [CrossRef]
- Barnabé-Heider, F.; Frisén, J. Stem cells for spinal cord repair. Cell Stem Cell 2008, 3, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Sawamoto, K.; Miyata, T.; Miyao, S.; Watanabe, M.; Nakamura, M.; Bregman, B.; Koike, M.; Uchiyama, Y.; Toyama, Y. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 2002, 69, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Sabelström, H.; Stenudd, M.; Frisén, J. Neural stem cells in the adult spinal cord. Exp. Neurol. 2014, 260, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wang, Y.; Graham, L.; McHale, K.; Gao, M.; Wu, D.; Brock, J.; Blesch, A.; Rosenzweig, E.S.; Havton, L.A. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012, 150, 1264–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, C.L.; Letzen, B.S.; Hill, C.M.; Agrawal, G.; Thakor, N.V.; Sterneckert, J.L.; Gearhart, J.D.; All, A.H. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int. J. Neurosci. 2010, 120, 305–313. [Google Scholar] [CrossRef]
- Hofstetter, C.P.; Holmström, N.A.; Lilja, J.A.; Schweinhardt, P.; Hao, J.; Spenger, C.; Wiesenfeld-Hallin, Z.; Kurpad, S.N.; Frisén, J.; Olson, L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 2005, 8, 346. [Google Scholar] [CrossRef]
- Giusto, E.; Donegà, M.; Cossetti, C.; Pluchino, S. Neuro-immune interactions of neural stem cell transplants: From animal disease models to human trials. Exp. Neurol. 2014, 260, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Nistor, G.I.; Totoiu, M.O.; Haque, N.; Carpenter, M.K.; Keirstead, H.S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005, 49, 385–396. [Google Scholar] [CrossRef]
- Priest, C.A.; Manley, N.C.; Denham, J.; Wirth, E.D., III; Lebkowski, J.S. Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen. Med. 2015, 10, 939–958. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.W.; Yang, M.S.; Park, J.S.; Kim, H.C.; Kim, Y.J.; Choi, J. Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int. J. Hematol. 2005, 81, 126–130. [Google Scholar] [CrossRef]
- Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringdén, O. Hla expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef]
- Volkman, R.; Offen, D. Concise review: Mesenchymal stem cells in neurodegenerative diseases. Stem Cells 2017, 35, 1867–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Qu, X.; Zhao, R.C. Mesenchymal stem cells hold promise for regenerative medicine. Front. Med. 2011, 5, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ren, H.; Han, Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J. Cell. Immunother. 2016, 2, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Novikova, L.N.; Brohlin, M.; Kingham, P.J.; Novikov, L.N.; Wiberg, M. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 2011, 13, 873–887. [Google Scholar] [CrossRef]
- Urdzíková, L.; Růžička, J.; LaBagnara, M.; Kárová, K.; Kubinová, Š.; Jiráková, K.; Murali, R.; Syková, E.; Jhanwar-Uniyal, M.; Jendelová, P. Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int. J. Mol. Sci. 2014, 15, 11275–11293. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.B.; Duarte, A.S.; Longhini, A.L.F.; Pradella, F.; Farias, A.S.; Luzo, A.C.; Oliveira, A.L.; Saad, S.T.O. Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion. Sci. Rep. 2015, 5, 16167. [Google Scholar] [CrossRef]
- Cho, S.-R.; Kim, Y.R.; Kang, H.-S.; Yim, S.H.; Park, C.-I.; Min, Y.H.; Lee, B.H.; Shin, J.C.; Lim, J.-B. Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone marrow in a rat model of spinal cord injury. Cell Trans. 2016, 25, 1423. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Xu, C.; Liu, Z.; Yang, L.; Hong, Y.; Liu, G.; Zhong, H.; Cai, X.; Lin, X.; Chen, X. Neural differentiation of bone marrow mesenchymal stem cells with human brain-derived neurotrophic factor gene-modified in functionalized self-assembling peptide hydrogel in vitro. J. Cell. Biochem. 2019, 120, 2828–2835. [Google Scholar] [CrossRef]
- Neirinckx, V.; Cantinieaux, D.; Coste, C.; Rogister, B.; Franzen, R.; Wislet-Gendebien, S. Concise review: Spinal cord injuries: How could adult mesenchymal and neural crest stem cells take up the challenge? Stem Cells 2014, 32, 829–843. [Google Scholar] [CrossRef]
- Nakajima, H.; Uchida, K.; Guerrero, A.R.; Watanabe, S.; Sugita, D.; Takeura, N.; Yoshida, A.; Long, G.; Wright, K.T.; Johnson, W.E. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma 2012, 29, 1614–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wu, X.; Liu, Q.; Kong, G.; Zhou, J.; Jiang, J.; Wu, X.; Huang, Z.; Su, W.; Zhu, Q. Ketogenic metabolism inhibits histone deacetylase (hdac) and reduces oxidative stress after spinal cord injury in rats. Neuroscience 2017, 366, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ouyang, L.; Lin, S.; Chen, S.; Liu, Y.; Zhou, W.; Wang, X. Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int. Immunopharmacol. 2018, 61, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.J.; Reis, R.L.; Sousa, N.; Gimble, J.M. Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 2010, 5, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Jo, S.-h.; Kim, W.H.; Kweon, O.-K. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res. Ther. 2015, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- Kolar, M.K.; Kingham, P.J.; Novikova, L.N.; Wiberg, M.; Novikov, L.N. The therapeutic effects of human adipose-derived stem cells in a rat cervical spinal cord injury model. Stem Cells Dev. 2014, 23, 1659–1674. [Google Scholar] [CrossRef]
- Kokai, L.E.; Marra, K.; Rubin, J.P. Adipose stem cells: Biology and clinical applications for tissue repair and regeneration. Trans. Res. 2014, 163, 399–408. [Google Scholar] [CrossRef]
- Ghasemi, N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran. J. Neurol. 2018, 17, 24. [Google Scholar]
- Menezes, K.; Nascimento, M.A.; Goncalves, J.P.; Cruz, A.S.; Lopes, D.V.; Curzio, B.; Bonamino, M.; De Menezes, J.R.; Borojevic, R.; Rossi, M.I.; et al. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats. PLoS ONE 2014, 9, e96020. [Google Scholar] [CrossRef]
- Hur, J.W.; Cho, T.-H.; Park, D.-H.; Lee, J.-B.; Park, J.-Y.; Chung, Y.-G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord Med. 2016, 39, 655–664. [Google Scholar] [CrossRef]
- Ryan, J.M.; Barry, F.P.; Murphy, J.M.; Mahon, B.P. Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm. 2005, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caron, I.; Rossi, F.; Papa, S.; Aloe, R.; Sculco, M.; Mauri, E.; Sacchetti, A.; Erba, E.; Panini, N.; Parazzi, V. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 2016, 75, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-B.; Huang, H.; Sun, P.; Ma, S.-Z.; Liu, A.-H.; Xue, J.; Fu, J.-H.; Liang, Y.-Q.; Liu, B.; Wu, D.-Y. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Trans. Med. 2016, 5, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Schira, J.; Gasis, M.; Estrada, V.; Hendricks, M.; Schmitz, C.; Trapp, T.; Kruse, F.; Kögler, G.; Wernet, P.; Hartung, H.-P. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain 2011, 135, 431–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, S.J.; Bielecki, R.; Yamanaka, N.; Fehlings, M.G.; Rogers, I.M.; Casper, R.F. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine 2010, 35, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Dasari, V.R.; Veeravalli, K.K.; Tsung, A.J.; Gondi, C.S.; Gujrati, M.; Dinh, D.H.; Rao, J.S. Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury. J. Neurotrauma 2009, 26, 2057–2069. [Google Scholar] [CrossRef]
- Kao, C.-H.; Chen, S.-H.; Chio, C.-C.; Lin, M.-T. Human umbilical cord blood-derived cd34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock 2008, 29, 49–55. [Google Scholar] [CrossRef]
- La Rocca, G.; Anzalone, R.; Corrao, S.; Magno, F.; Loria, T.; Iacono, M.L.; Di Stefano, A.; Giannuzzi, P.; Marasà, L.; Cappello, F. Isolation and characterization of oct-4+/hla-g+ mesenchymal stem cells from human umbilical cord matrix: Differentiation potential and detection of new markers. Histochem. Cell Biol. 2009, 131, 267–282. [Google Scholar] [CrossRef]
- Troyer, D.L.; Weiss, M.L. Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 2008, 26, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-C.; Shih, Y.-H.; Ko, M.-H.; Hsu, S.-Y.; Cheng, H.; Fu, Y.-S. Transplantation of human umbilical mesenchymal stem cells from wharton’s jelly after complete transection of the rat spinal cord. PLoS ONE 2008, 3, e3336. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.; Torres-Espin, A.; Navarro, X. Adult stem cell transplants for spinal cord injury repair: Current state in preclinical research. Curr. Stem Cell Res. Ther. 2011, 6, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Jeon, S.R. Current concept of stem cell therapy for spinal cord injury: A review. Korean J. Neurotrauma 2016, 12, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Bramanti, P.; Mazzon, E. The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp. Ther. Med. 2017, 14, 3355–3368. [Google Scholar]
- Mendonça, M.V.P.; Larocca, T.F.; De Freitas Souza, B.S.; Villarreal, C.F.; Silva, L.F.M.; Matos, A.C.; Novaes, M.A.; Bahia, C.M.P.; Martinez, A.C.d.O.M.; Kaneto, C.M. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res. Ther. 2014, 5, 126. [Google Scholar]
- Satti, H.S.; Waheed, A.; Ahmed, P.; Ahmed, K.; Akram, Z.; Aziz, T.; Satti, T.M.; Shahbaz, N.; Khan, M.A.; Malik, S.A. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A phase i pilot study. Cytotherapy 2016, 18, 518–522. [Google Scholar] [CrossRef]
- El-Kheir, W.A.; Gabr, H.; Awad, M.R.; Ghannam, O.; Barakat, Y.; Farghali, H.A.; Maadawi, Z.M.E.; Ewes, I.; Sabaawy, H.E. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Trans. 2014, 23, 729–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ra, J.C.; Shin, I.S.; Kim, S.H.; Kang, S.K.; Kang, B.C.; Lee, H.Y.; Kim, Y.J.; Jo, J.Y.; Yoon, E.J.; Choi, H.J. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011, 20, 1297–1308. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, X.; Hua, R.; Dai, G.; Wang, X.; Gao, J.; An, Y. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J. Trans. Med. 2014, 12, 253. [Google Scholar] [CrossRef] [Green Version]
Identifier | Study Title | Phase | Subjects | Cell Therapy | Route of Administration | Intervention | Efficacy | Security | Ref |
---|---|---|---|---|---|---|---|---|---|
Bone Marrow Mesenchymal Stem Cells | |||||||||
NCT02152657 | Evaluation of Autologous Mesenchymal Stem Cell Transplantation in Chronic Spinal Cord Injury: A Pilot Study | Phase 1 | 5 patients (18–65 years) | BM-MSCs | Percutaneous injection. | MSC transplantation | - | - | - |
NCT01325103 | Autologous Bone Marrow Stem Cell Transplantation in Patients With Spinal Cord Injury | Phase 1 | 14 patients (18–65 years) | BM-MSCs(5 × 106 cells/cm3; single dose) | Intralesional injection | Autologous BM-MSC transplantation | Variable improvements in sensitivity were recorded in all patients and eight of these developed in lower limb motor functions. Seven patients improved AIS. Three subjects ameliorated the neuropathic pain and one presented changes in SSEP. | All patients were discharged within 48 h after surgery. One subject developed complication of cerebrospinal fluid leak, not related to the transplantation but rather to the intervention practices. No patients presented severe side effects or other complications. | [75] |
NCT02482194 | Autologous Mesenchymal Stem Cells Transplantation for Spinal Cord Injury- A Phase I Clinical Study | Phase 1 | 9 patients (18–50 years) | BM-MSCs (1.2 × 106 cells/kg; two or three dose) | Intrathecal injection | Autologous BM-MSC transplantation | After 1 year of treatment, no participant in the MRI analysis showed a change in the hyperintense signal or presence of ectopic tissue. | No severe side events were recorded in any subjects. One patient complained of severe headaches, while two patients accounted for the non-specific tingling sensation. | [76] |
NCT01909154 | Safety Study of Local Administration of Autologous Bone Marrow Stromal Cells in Chronic Paraplegia | Phase 1 | 9 patients (18–50 years) | BM-MSCs (a minimum dose of 100 × 106 and a second dose of 30 × 106 after 3 months) | Intrathecal injection | Autologous BM-MSC transplantation (two doses) | After 12 months, patients had significant sensitivity recovery and an improvement in the level of chronic pain was observed. Seven patients showed the presence of SSEPs and improvement of urodynamic function was recorded. | No serious adverse events were recorded, while adverse events were recorded in each patient. | - |
NCT01328860 | Autologous Stem Cells for Spinal Cord Injury (SCI) in Children | Phase 1 | 10 children (1–15 years) | BMPCs | Intravenous infusion | Autologous BMPC transplantation | - | - | - |
NCT01186679 | Safety and Efficacy of Autologous Bone Marrow Stem Cells in Treating Spinal Cord Injury | Phase 1/2 | 12 patients (20–55 years) | BM-MSCs | Intrathecal injection | Autologous BM-MSC transplantation | - | - | - |
NCT00816803 | Cell Transplant in Spinal Cord Injury Patients | Phase 1/2 | 70 patients (10–36 years) | BM-MSCs | Intrathecal injection | Autologous BM-MSC transplantation | Seventeen of 50 patients treated with BM-MSCs showed achieved ASIA conversion and 17 patients observed an improvement in motor functions. Twelve months later, two patients recorded an improvement of nervous tissue damaged. | Most of the side effects were common with treatment was observed including headache and mild pain, buts all were transitory and totally solved. | [77] |
NCT02570932 | Administration of Expanded Autologous Adult Bone Marrow Mesenchymal Cells in Established Chronic Spinal Cord Injuries | Phase 2 | 10 patients (18–70 years) | BM-MSCs (three doses of 100 × 106 cells) | Intrathecal injection | Autologous BM-MSC transplantation | - | - | - |
Bone Marrow Mesenchymal Stem Cells versus Adipose Tissue-derived Mesenchymal Stem Cells | |||||||||
NCT02981576 | Safety and Effectiveness of BM-MSC vs. AT-MSC in the Treatment of SCI Patients. | Phase 1/2 | 14 patients (18–70 years) | BM-MSCs and AT-MSCs (three doses) | Intrathecal injection | Autologous BM-MSCs or AT-MSC transplantation | - | - | - |
Adipose Tissue-derived Mesenchymal Stem Cells | |||||||||
NCT01274975 | Autologous Adipose Derived MSCs Transplantation in Patient With Spinal Cord Injury. | Phase 1 | 8 patients (19–60 years) | AT-MSCs (4 × 108 cells; a single dose) | Intravenous infusion | Autologous AT-MSC Transplantation | MRI, 12 weeks after administration of AT-MSCs, showed a reduction of the spinal section injured, but without significant difference (p = 0.8047). In one patient was observed conversion ASIA A scale in ASIA C and he showed an improvement in motor function and sensory functions. | No severe side effects associated with the intravenous administration were recorded. Nineteen adverse events were observed, but all resolved or stabilized during follow-up. | [78] |
NCT01624779 | Intrathecal Transplantation Of Autologous Adipose Tissue Derived MSC in the Patients With Spinal Cord Injury | Phase 1 | 15 patients (19–70 years) | AT-MSCs (9 × 107 cells/3 mL; three doses) | Intrathecal injection | Autologous AT-MSC Transplantation | - | - | - |
NCT01769872 | Safety and Effect of Adipose Tissue Derived Mesenchymal Stem Cell Implantation in Patients With Spinal Cord Injury | Phase 1/2 | 15 patients (19–70 years) | AT-MSCs (2 × 108 cells/20 mL, 5 × 107 cells/2 mL and 2 × 107 cells/1 mL cells) | Intravenous, Intrathecal and Intralesional injections | Autologous AT-MSC Transplantation | - | - | - |
Umbilical Cord Mesenchymal Stem Cells | |||||||||
NCT01393977 | Difference Between Rehabilitation Therapy and Stem Cells Transplantation in Patients With Spinal Cord Injury in China | Phase 3 | 34 patients (20–50 years) | UC-MSCs (4 × 107 cells) | Intrathecal injection | UC-MSC transplantation and traditional rehabilitation therapy | Seven of 10 subjects that received stem cells showed a significant enhancement in motor functions, auto-self ability and in muscular tension. Five subjects treated with the rehabilitative therapy showed some improvement in the same functions, but they were not statistically significant. | No side effects were recorded. | [79] |
NCT01873547 | Different Efficacy Between Rehabilitation Therapy and Stem Cells Transplantation in Patients With SCI in China | Phase 3 | 300 patients (20–65 years) | UC-MSCs | Intrathecal injection | UC-MSC transplantation and traditional rehabilitation therapy | - | - | - |
Neuronal Stem Cells | |||||||||
NCT01321333 | Study of Human Central Nervous System Stem Cells (HuCNS-SC) in Patients With Thoracic Spinal Cord Injury | Phase 1/2 | 12 patients (18–60 years) | Human CNS-SCs | Intramedullary transplantation | Human CNS-SC transplantation | - | - | - |
NCT01725880 | Long-Term Follow-Up of Transplanted Human Central Nervous System Stem Cells (HuCNS-SC) in Spinal Cord Trauma Subjects | - | 12 patients (18–60 years) | Human CNS-SCs | Intramedullary transplantation | Human CNS-SC transplantation | - | - | - |
NCT02163876 | Study of Human Central Nervous System (CNS) Stem Cell Transplantation in Cervical Spinal Cord Injury | Phase 2 | 31 patients (18–60 years) | Human CNS-SCs | Intramedullary transplantation | Human CNS-SC transplantation | - | - | - |
NCT02302157 | Dose Escalation Study of AST-OPC1 in Spinal Cord Injury | Phase 1/2 | 25 patients (18–69 years) | AST-OPC1 (10 million cells; two doses) | - | AST-OPC1 transplantation | - | - | - |
Identifier | Study Title | Phase | Subjects | Cell Therapy | Route of Administration | Intervention |
---|---|---|---|---|---|---|
Umbilical Cord Mesenchymal Stem Cells | ||||||
NCT03505034 | Intrathecal Transplantation of UC-MSC in Patients With Late Stage of Chronic Spinal Cord Injury | Phase 2 | 30 patients (18–65 years) | UC-MSCs (1 × 106 cells/kg; once a month for 4 times) | Intrathecal injection | Allogenic UC-MSC transplantation |
NCT03521336 | Intrathecal Transplantation of UC-MSC in Patients With Sub-Acute Spinal Cord Injury | Phase 2 | 84 patients (18–65 years) | UC-MSCs (1 × 106 cells/kg; once a month for 4 times) | Intrathecal injection | Allogenic UC-MSC transplantation |
NCT03521323 | Intrathecal Transplantation of UC-MSC in Patients With Early Stage of Chronic Spinal Cord Injury | Phase 2 | 66 patients (≥18 years) | UC-MSCs (1 × 106 cells/kg; once a month for 4 times) | Intrathecal injection | Allogenic UC-MSC transplantation |
NCT03003364 | Intrathecal Administration of Expanded Wharton’s Jelly Mesenchymal Stem Cells in Chronic Traumatic Spinal Cord Injury | Phase 1/2 a | 10 patients (18–65 years) | WJ-MSCs (2 doses) | Intrathecal injection | WJ-MSC transplantation |
Adipose Tissue-derived Mesenchymal Stem Cells | ||||||
NCT03308565 | Adipose Stem Cells for Traumatic Spinal Cord Injury | Phase 1 | 10 patients (≥18 years) | AT-MSCs (100 million cells; a single dose) | Intrathecal injection | Autologous AT-MSC transplantation |
Bone Marrow Mesenchymal Stem Cells | ||||||
NCT02574572 | Autologous Mesenchymal Stem Cells Transplantation in Cervical Chronic and Complete Spinal Cord Injury | Phase 1 | 10 patients (18–65 years) | BM-MSCs (2 doses) | Percutaneous injection | Autologous BM-MSC transplantation |
NCT02574585 | Autologous Mesenchymal Stem Cells Transplantation in Thoracolumbar Chronic and Complete Spinal Cord Injury Spinal Cord Injury | Phase 2 | 40 patients (18–65 years) | BM-MSCs (2 doses) | Percutaneous injection | Autologous BM-MSC transplantation |
NCT01676441 | Safety and Efficacy of Autologous Mesenchymal Stem Cells in Chronic Spinal Cord Injury | Phase 2/3 | 32 patients (16–65 years) | BM-MSCs (1 × 106 and 1 × 107; two doses) | Intrathecal injection | Autologous BM-MSC transplantation |
NCT02687672 | Transplantation of Autologous Bone Marrow or Leukapheresis-Derived Stem Cells for Treatment of Spinal Cord Injury | Phase 1/2 | 50 patients (5–50 years) | BM-MSCs | - | Autologous BM-MSC transplantation |
Neuronal Stem Cells | ||||||
NCT01772810 | Safety Study of Human Spinal Cord-derived Neural Stem Cell Transplantation for the Treatment of Chronic SCI | Phase 1 | 8 patients (18–65 years) | Human Spinal Cord-derived Neural Stem Cells | - | Human Spinal Cord-derived Neural Stem Cell Transplantation |
NCT04205019 | Safety Stem Cells in Spinal Cord Injury | Phase 1 | 10 patients (18–40 years | Neuro-Cells | Intrathecal injection | Neuro-Cells Transplantation |
NCT03935724 | Clinical Study of an Autologous Stem Cell Product in Patients With a (Sub)Acute Spinal Cord Injury | Phase 2/3 | 8 patients (18–65 years | Neuro-Cells | - | Neuro-Cells Transplantation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestro, S.; Bramanti, P.; Trubiani, O.; Mazzon, E. Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. Int. J. Mol. Sci. 2020, 21, 659. https://doi.org/10.3390/ijms21020659
Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. International Journal of Molecular Sciences. 2020; 21(2):659. https://doi.org/10.3390/ijms21020659
Chicago/Turabian StyleSilvestro, Serena, Placido Bramanti, Oriana Trubiani, and Emanuela Mazzon. 2020. "Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials" International Journal of Molecular Sciences 21, no. 2: 659. https://doi.org/10.3390/ijms21020659
APA StyleSilvestro, S., Bramanti, P., Trubiani, O., & Mazzon, E. (2020). Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. International Journal of Molecular Sciences, 21(2), 659. https://doi.org/10.3390/ijms21020659