Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Scanning Electron Microscopy (SEM) Analysis
2.3. Porosity Determination
2.4. Cr-CPE Preparation
2.5. Ink Formulation Preparation
2.6. Production of the SPE
2.7. Electrochemical Detection
2.8. Atomic Absorption Spectrometry
2.9. Descriptive Statistics
3. Results and Discussion
3.1. Modification of Carbon Paste with Chromium(III)
3.2. Electrochemical Determination of Individual Zinc, Cadmium, Lead and Copper Ions
3.3. Simultaneous Detection of Zinc, Cadmium, Lead, Copper and Silver Ions
3.4. Interferences
3.5. The Chromium Modified Screen-Printed Electrode (Cr-SPE)
3.6. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- El Tall, O.; Jaffrezic-Renault, N.; Sigaud, M.; Vittori, O. Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron-Doped Diamond Electrode. Electroanalysis 2007, 19, 1152–1159. [Google Scholar] [CrossRef]
- March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 2015, 5, 241–275. [Google Scholar] [CrossRef] [PubMed]
- Zhiani, R.; Ghanei-Motlag, M.; Razavipanah, I. Selective voltammetric sensor for nanomolar detection of silver ions using carbon paste electrode modified with novel nanosized Ag(I)-imprinted polymer. J. Mol. Liq. 2016, 219, 554–560. [Google Scholar] [CrossRef]
- Yuan, W.Z.; Yang, N.; Li, X.K. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. Biomed. Res. Int. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Luevano, J.; Damodaran, C. A review of molecular events of cadmium-induced carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 2014, 33. [Google Scholar] [CrossRef]
- García-Lestón, J.; Méndez, J.; Pásaro, E.; Laffon, B. Genotoxic effects of lead: An updated review. Environ. Int. 2010, 36, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Gardea-Torresdey, J.L.; Peralta-Videa, J.R.; Montes, M.; De La Rosa, G.; Corral-Diaz, B. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 2004, 92, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Cherfi, A.; Abdoun, S.; Gaci, O. Food survey: Levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem. Toxicol. 2014, 70, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [PubMed]
- Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Nourifard, F.; Payehghadr, M.; Kalhor, M.; Nejadali, A. An Electrochemical Sensor for Determination of Ultratrace Cd, Cu and Hg in Water Samples by Modified Carbon Paste Electrode Base on a New Schiff Base Ligand. Electroanalysis 2015, 27, 2479–2485. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Masini, J.C. Automated determination of Cu(II), Pb(II), Cd(II) and Zn(II) in environmental samples by square wave voltammetry exploiting sequential injection analysis and screen printed electrodes. Electroanalysis 2014, 26, 2754–2763. [Google Scholar] [CrossRef]
- Svancara, I.; Vytras, K.; Barek, J.; Zima, J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 2001, 31, 311–345. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Dossi, C.; Monticelli, D.; Pozzi, A.; Recchia, S. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE). Biosensors 2016, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Serrano, N.; Alberich, A.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. Trac-Trends Anal. Chem. 2013, 46, 15–29. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Santos, V.S.; Baêta, B.E.L.; Pereira, A.C.; Kubota, L.T. Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. J. Hazard. Mater. 2009, 169, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Richtera, L.; Nguyen, H.V.; Hynek, D.; Kudr, J.; Adam, V. Electrochemical speciation analysis for simultaneous determination of Cr(III) and Cr(VI) using an activated glassy carbon electrode. Analyst 2016, 141, 5577–5585. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, K.C.; Tatum, C.E.; Dansby-Sparks, R.N.; Chambers, J.Q.; Xue, Z.-L. Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 2010, 82, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Saturno, J.; Valera, D.; Carrero, H.; Fernández, L. Electroanalytical detection of Pb, Cd and traces of Cr at micro/nano-structured bismuth film electrodes. Sens. Actuator B-Chem. 2011, 159, 92–96. [Google Scholar] [CrossRef]
- Chaiyo, S.; Mehmeti, E.; Žagar, K.; Siangproh, W.; Chailapakul, O.; Kalcher, K. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal. Chim. Acta 2016, 918, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.I.; Berg, B.R.; Klimek, R. The determination of zinc, cadmium, lead and copper in a single sea-water sample by differential pulse anodic stripping voltammetry. Anal. Chim. Acta 1976, 84, 307–317. [Google Scholar] [CrossRef]
- Gardiner, J.; Stiff, M. The determination of cadmium. lead, copper and zinc in ground water, estuarine water, sewage and sewage effluent by anodic stripping voltammetry. Water Res. 1975, 9, 517–523. [Google Scholar] [CrossRef]
- Çelik, U.; Oehlenschläger, J. High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish supermarkets. Food Control 2007, 18, 258–261. [Google Scholar] [CrossRef]
- Mahesar, S.; Sherazi, S.; Niaz, A.; Bhanger, M.; Rauf, A. Simultaneous assessment of zinc, cadmium, lead and copper in poultry feeds by differential pulse anodic stripping voltammetry. Food Chem. Toxicol. 2010, 48, 2357–2360. [Google Scholar] [CrossRef] [PubMed]
- Jakmunee, J.; Junsomboon, J. Determination of cadmium, lead, copper and zinc in the acetic acid extract of glazed ceramic surfaces by anodic stripping voltammetric method. Talanta 2008, 77, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, C. Heavy metals in matrices of food interest: Sequential voltammetric determination at trace and ultratrace level of copper, lead, cadmium, zinc, arsenic, selenium, manganese and iron in meals. Electroanalysis 2004, 16, 1478–1486. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Micropore Analysis. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Berlin, Germany, 2004; pp. 129–156. [Google Scholar]
- Trnkova, L.; Adam, V.; Kizek, R. The effect of cadmium ions and cadmium nanoparticles on chicken embryos and evaluation of organ accumulation. Int. J. Electrochem. Sci 2015, 10, 3623–3634. [Google Scholar]
- Long, G.L.; Winefordner, J.D. Limit of detection. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar]
- Arvand, M.; Abolghasemi, S.; Zanjanchi, M. Simultaneous determination of zinc and copper(II) with 1-(2-pyridylazo) 2-naphthol in micellar media by spectrophotometric H-point standard addition method. J. Anal. Chem. 2007, 62, 342–347. [Google Scholar] [CrossRef]
- Devnani, H.; Rajawat, D.S.; Satsangee, S.P. Black Rice Modified Carbon Paste Electrode for the Voltammetric Determination of Pb(II), Cd(II), Cu(II) and Zn(II). Proc. Nat. Acad. Sci. India A 2014, 84, 361–370. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, X.; Zhou, C.; Sun, D.; Dong, Y.; Liu, Z. Simultaneous determination of copper, lead, and cadmium at hexagonal mesoporous silica immobilized quercetin modified carbon paste electrode. J. Anal. Methods Chem. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Madrakian, T.; Sabounchei, S.J.; Rezaei, M.; Samiee, S.; Pourshahbaz, M. Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury(II) and cadmium(II). Sens. Actuator B-Chem. 2012, 161, 542–548. [Google Scholar] [CrossRef]
- Yantasee, W.; Lin, Y.; Fryxell, G.E.; Busche, B.J. Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS). Anal. Chim. Acta 2004, 502, 207–212. [Google Scholar] [CrossRef]
- Ping, J.; Wu, J.; Ying, Y.; Wang, M.; Liu, G.; Zhang, M. Evaluation of trace heavy metal levels in soil samples using an ionic liquid modified carbon paste electrode. J. Agric. Food Chem. 2011, 59, 4418–4423. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, X.; Fei, R.; Hu, Y. Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors. Talanta 2013, 116, 548–553. [Google Scholar]
- Mohadesi, A.; Taher, M.A. Stripping voltammetric determination of silver(I) at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4 (3H)-one. Talanta 2007, 71, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Shirzadmehr, A.; Madrakian, T.; Bagheri, H. New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 2015, 131, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Hashemi, B.; Dehdashtian, S.; Mohammadi, M.; Gholivand, M.B.; Garau, A.; Lippolis, V. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1, 10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors. Anal. Chim. Acta 2014, 852, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Rohani, T.; Taher, M.A. Preparation of a carbon ceramic electrode modified by 4-(2-pyridylazo)-resorcinol for determination of trace amounts of silver. Talanta 2010, 80, 1827–1831. [Google Scholar] [CrossRef] [PubMed]
- Nadiki, H.H.; Taher, M.A.; Ashkenani, H.; Sheikhshoai, I. Fabrication of a new multi-walled carbon nanotube paste electrode for stripping voltammetric determination of Ag(I). Analyst 2012, 137, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, M.; Ganjali, M.R.; Norouzi, P.; Badiei, A.; Hasheminasab, A.; Abdouss, M. Carbon paste electrode modified with functionalized nanoporous silica gel as a new sensor for determination of silver ion. Electroanalysis 2007, 19, 1307–1314. [Google Scholar] [CrossRef]
- Muamar, A.-J.; Zouahri, A.; Tijane, M.H.; El Housni, A.; Mennane, Z.; Yachou, H.; Bouksaim, M. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat region “Morocco”. J. Mater. Environ. Sci. 2014, 5, 961–966. [Google Scholar]
Electrode Type | Detected Ion | a | b | r2 |
---|---|---|---|---|
Cr-CPE | Zn(II) | 0.0109 | −0.4783 | 0.9905 |
(individual ions) | Cd(II) | 0.0177 | 1.5649 | 0.9890 |
Pb(II) | 0.0566 | −0.6693 | 0.9952 | |
Cu(II) | 0.1104 | 0.4032 | 0.9904 | |
Cr-CPE | Zn(II) | 0.0096 | −0.4081 | 0.9900 |
(mixture solution) | Cd(II) | 0.0103 | 1.1684 | 0.9934 |
Pb(II) | 0.0710 | 0.7963 | 0.9941 | |
Cu(II) | 0.1244 | 3.9573 | 0.9934 |
Electrode Type | Detected Metal | Analysis Method | LOD (µg∙L−1) | Linear Range (µg∙L−1) | Accumulation Time (s) | References |
---|---|---|---|---|---|---|
BRMCPE 1 | Zn(II) | SWASV | 134 | 400–1000 | 300 | [34] |
Cd(II) | 155 | 400–1000 | ||||
Pb(II) | 15 | 50–200 | ||||
Cu(II) | 125 | 250–700 | ||||
HMS-Qu/CPE 2 | Cd(II) | DPV 7 | 0.1 | 0.5–229 | 120 | [35] |
Pb(II) | 0.2 | 2–1658 | ||||
Cu(II) | 0.3 | 1–381 | ||||
N-BDMP 3 | Cd(II) | SWASV | 7 | 10–2000 | 210 | [36] |
Hg(II) | 8 | 10–2000 | ||||
Ac-Phos SAMMS 4 | Cd(II) | SWASV | 0.5 | 10–200 | 1200 | [37] |
Cu(II) | 0.5 | 10–200 | ||||
Pb(II) | 0.5 | 10–200 | ||||
MWCNT/CPE 5 | Zn(II) | PSA 8 | 28 | 58–646 | 180 | [18] |
Cd(II) | 8 | 58–646 | ||||
Pb(II) | 7 | 58–646 | ||||
OPFP with bismuth film 6 | Pb(II) | SWASV | 0.1 | 1–100 | 120 | [38] |
Cd(II) | 0.1 | 1–100 | ||||
Cr-CPE | Zn(II) | SWASV | 25 | 80–800 | 100 | This work |
Cd(II) | 3 | 10–800 | ||||
Pb(II) | 3 | 10–800 | ||||
Cu(II) | 3 | 10–800 |
Electrode Type | Analysis Method | LOD (µg∙L−1) | Linear Range (µg∙L−1) | Accumulation Time (s) | References |
---|---|---|---|---|---|
MGCE modified with Fe3O4-Au NPs 1 | DPV | 6 | 13–1910 | 300 | [39] |
CPE modified with AMQ 2 | DPASV 8 | 0.4 | 0.9–302 | 720 | [40] |
CPE modified with GSN-TH-DPA 3 | POT 9 | 0.5 | 0.9–1079000 | - | [41] |
CPE modified with IIP 4 | DPSV 10 | 0.1 | 0.3–92 | 360 | [42] |
CPE modified with PAR 5 | DPASV | 0.1 | 0.5–302 | 720 | [43] |
CPE modified with IIP-MWCNTs | DPSV | 0.01 | 0.05–30 | 180 | [4] |
CPE modified with NBHAE-MWCNTs 6 | DPASV | 0.09 | 0.5–194 | 540 | [44] |
CPE modified with DPSG 7 | POT | 11 | 54–10790000 | - | [45] |
Cr-CPE | SWASV | 3 | 10–500 | 100 | This work |
Electrode Type | Detected Ion | LOD (µg∙L−1) | Linear Range (µg∙L−1) |
---|---|---|---|
Cr-CPE | Zn(II) | 25 | 80–800 |
Cd(II) | 3 | 10–800 | |
Pb(II) | 3 | 10–800 | |
Cu(II) | 3 | 10–800 | |
Cr-SPE | Zn(II) | 350 | 400–800 |
Cd(II) | 25 | 80–800 | |
Pb(II) | 3 | 10–800 | |
Cu(II) | 3 | 10–800 |
Type of Measurement | Zn(II) (mg∙L−1) | Cd(II) (mg∙L−1) | Pb(II) (mg∙L−1) | Cu(II) (mg∙L−1) |
---|---|---|---|---|
Cr-SPE | 2.6 ± 0.8 | 3.5 ± 0.7 | 5.7 ± 1.1 | 7.9 ± 0.6 |
HMDE 1 | 6.2 ± 0.5 | 3.9 ± 0.3 | 4.7 ± 0.3 | 8.3 ± 0.5 |
AAS | 6.6 ± 0.01 | 4.2 ± 0.04 | 4.8 ± 0.02 | 8.8 ± 0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koudelkova, Z.; Syrovy, T.; Ambrozova, P.; Moravec, Z.; Kubac, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide. Sensors 2017, 17, 1832. https://doi.org/10.3390/s17081832
Koudelkova Z, Syrovy T, Ambrozova P, Moravec Z, Kubac L, Hynek D, Richtera L, Adam V. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide. Sensors. 2017; 17(8):1832. https://doi.org/10.3390/s17081832
Chicago/Turabian StyleKoudelkova, Zuzana, Tomas Syrovy, Pavlina Ambrozova, Zdenek Moravec, Lubomir Kubac, David Hynek, Lukas Richtera, and Vojtech Adam. 2017. "Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide" Sensors 17, no. 8: 1832. https://doi.org/10.3390/s17081832
APA StyleKoudelkova, Z., Syrovy, T., Ambrozova, P., Moravec, Z., Kubac, L., Hynek, D., Richtera, L., & Adam, V. (2017). Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide. Sensors, 17(8), 1832. https://doi.org/10.3390/s17081832