Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe3O4/PVDF-co-HFP Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Si-Modified GO
2.3. Preparation of Si-Modified rGO@Fe3O4 Nanocomposites
2.4. Fabrication of Si-Modified rGO@Fe3O4/PVDF-co-HFP Composites
2.5. Characterization
3. Results
3.1. Morphology and Structure
3.2. Electromagnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, N.; Huang, G.; Li, Y.; Xiao, H.; Feng, Q.; Hu, N.; Fu, S. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983. [Google Scholar] [CrossRef] [PubMed]
- Green, M.; Xiang, P.; Liu, Z.; Murowchick, J.; Tan, X.; Huang, F.; Chen, X. Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J. Materiomics 2019, 5, 133–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, Y.; Li, Y.; Han, X.; Zhang, T. Octahedron Fe3O4 particles supported on 3D MWCNT/graphene foam: In-situ method and application as a comprehensive microwave absorption material. Appl. Surf. Sci. 2017, 416, 329–337. [Google Scholar] [CrossRef]
- An, D.; Zhang, Z.; Wang, Y.; Cheng, S.; Liu, Y. The distinctly enhanced electromagnetic wave absorption properties of FeNi/rGO nanocomposites compared with pure FeNi alloys. J. Supercond. Nov. Magn 2019, 32, 385–392. [Google Scholar]
- Wu, J.; Chung, D. Improving colloidal graphite for electromagnetic interference shielding using 0.1 um diameter carbon filaments. Carbon 2003, 41, 1313–1315. [Google Scholar] [CrossRef]
- Low, K.; Sale, F. Electromagnetic properties of gel-derived NiCuZn ferrites. J. Magn. Magn. Mater. 2002, 246, 30–35. [Google Scholar] [CrossRef]
- Kimura, S.; Kato, T.; Hyodo, T.; Shimizu, Y.; Egashira, M. Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method. J. Magn. Magn. Mater. 2007, 312, 181–186. [Google Scholar] [CrossRef]
- Che, R.; Peng, L.; Duan, X.; Chen, Q.; Liang, X. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405. [Google Scholar] [CrossRef]
- Lv, R.; Kang, F.; Gu, J.; Gui, X.; Wei, J.; Wang, K.; Wu, D. Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber. Appl. Phys. Lett. 2008, 93, 223105. [Google Scholar] [CrossRef] [Green Version]
- Jian, X.; Wu, B.; Wei, Y.; Dou, S.; Wang, X.; He, W.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101–6109. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Wang, P.; Ji, G.; Song, J.; Zheng, L.; Zeng, H.; Xu, Z. A voltage-boosting Strategy Enabling a Low-frequency, Flexible Electromagnetic Wave Absorption Device. Adv. Mater. 2018, 30, 1706343. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Xiao, Z.; Yan, X.; Gao, Z.; Tang, Y.; Hou, L.; Li, Q.; Ning, G.; Li, Y. Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires. ACS Appl. Mater. Interfaces 2018, 10, 40078–40087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, F.; Zhang, S.; Yuan, H.; Zhu, C.; Zhang, X.; Chen, Y. Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 24920–24929. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Han, X.; Xu, P.; Zhang, X.; Du, Y.; Hu, S.; Wang, J.; Wang, X. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906. [Google Scholar] [CrossRef]
- Kuang, B.; Song, W.; Ning, M.; Li, J.; Zhao, Z.; Guo, D.; Cao, M.; Jin, H. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018, 127, 209–217. [Google Scholar] [CrossRef]
- Kang, Y.; Chu, Z.; Zhang, D.; Li, G.; Jiang, Z.; Cheng, H.; Li, X. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208. [Google Scholar] [CrossRef]
- Huang, L.; Li, J.; Wang, Z.; Li, Y.; He, X.; Yuan, Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019, 143, 507–516. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Du, Y.; Bai, J.; Fan, H.; Zhang, H.; Peng, Y.; Li, F. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 2015, 3, 5535–5546. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, M.; Qiao, Y.; Xiao, G.; Zhang, F.; Chen, Y. Fe3O4/TiO2 Core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 2010, 114, 16229–16235. [Google Scholar] [CrossRef]
- Shu, R.; Zhang, G.; Zhang, J.; Wang, X.; Wang, M.; Gan, Y.; Shi, J.; He, J. Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloy. Compd. 2018, 736, 1–11. [Google Scholar] [CrossRef]
- Li, D.; Liao, H.; Kikuchi, H.; Liu, T. Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 2017, 9, 44704–44714. [Google Scholar] [CrossRef] [PubMed]
- Shorstkii, I.; Yakovlev, N. Synthesis of magnetically controlled Fe3O4 composites and their enhanced microwave absorption properties. Mater. Res. Express 2019, 6, 046104. [Google Scholar] [CrossRef]
- Shorstkii, I. Dynamic Arrays Based on Magnetically Controlled Particles: Synthesis and Application. Mat. Res. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, J.; Yang, Z.; Ji, G. Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on Prussian blue shell. ACS Appl. Mater. Interfaces 2018, 10, 28887–28897. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Han, G.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y.; Ma, J.; Wang, Y.; Zhang, R.; Liu, C. A promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Geng, S.; Zhou, C.; Jia, X.; Yang, F.; Zhang, L.; Ren, X.; Yang, H. Preparation of flexible reduced graphene oxide/ poly(vinyl alcohol) film with superior microwave absorption properties. RSC Adv. 2015, 5, 88958–88964. [Google Scholar] [CrossRef]
- Qin, F.; Brosseau, C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 2012, 111, 061301. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, X.; Chen, M.; Song, W.; Chen, J.; Fan, Q.; Tang, L.; Fang, D. Ultrathin Flexible Carbon Fiber Reinforced Hierarchical Metastructure for Broadband Microwave Absorption with Nano Lossy Composite and Multiscale Optimization. ACS Appl. Mater. Interfaces 2018, 10, 44731–44740. [Google Scholar] [CrossRef]
- Yang, H.; Han, N.; Lin, Y.; Zhang, G.; Wang, L. Enhanced microwave absorbing properties of PANI/CoFe2O4/PVDF composite. RSC Adv. 2016, 6, 100585–100589. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, M.; Wu, Y.; Xiang, L.; Tang, Y. A flexible dual-Ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv. Funct. Mater. 2019, 1906770. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Ding, Q.; Jin, X.; Ke, Q.; Li, Z.; Wang, D.; Huang, C. Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Appl. Mater. Interfaces 2019, 11, 38023–38030. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, G.; Liu, L.; Liu, L.; Guo, L.; Yu, S. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294. [Google Scholar] [CrossRef]
- Guo, L.; Wen, J.; Cheng, G.; Yuan, N.; Ding, J. Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes. J. Mater. Chem. C 2016, 4, 9762–9770. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, S.; Chen, Y.; Li, S. Preparation, characterization, and properties of silanized graphene oxide reinforced biobased benzoxazine-bismaleimide resin composites. J. Adhes. Sci. Technol. 2019, 33, 1974–1988. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Edit. 2005, 117, 2842–2845. [Google Scholar] [CrossRef]
- Yuan, R.; Ju, P.; Wu, Y.; Ji, L.; Li, H.; Chen, L.; Zhou, H.; Chen, J. Silane-grafted graphene oxide improves wear and corrosion resistance of polyimide matrix: molecular dynamics simulation and experimental analysis. J. Mater. Sci. 2019, 54, 11069–11083. [Google Scholar] [CrossRef]
- Tong, Y.; He, M.; Zhou, Y.; Nie, S.; Zhong, X.; Fan, L.; Huang, T.; Liao, Q.; Wang, Y. Three-Dimensional Hierarchical Architecture of the TiO2/Ti3C2Tx/RGO Ternary Composite Aerogel for Enhanced Electromagnetic Wave Absorption. ACS Sustain. Chem. Eng. 2018, 6, 8212–8222. [Google Scholar] [CrossRef]
- Kong, L.; Yin, X.; Zhang, Y.; Yuan, X.; Li, Q.; Ye, F.; Cheng, L.; Zhang, L. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701–19711. [Google Scholar] [CrossRef]
- Zong, M.; Huang, Y.; Zhao, Y.; Sun, X.; Qu, C.; Luo, D.; Zheng, J. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. RSC Adv. 2013, 3, 23638–23648. [Google Scholar] [CrossRef]
- Wu, H.; Wu, G.; Wang, L. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 2015, 269, 443–451. [Google Scholar] [CrossRef]
- Zhao, G.; Lv, H.; Zhou, Y.; Zheng, X.; Wu, C.; Xu, C. Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2018, 10, 42925–42932. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Deng, F.; Zhu, J.; Chen, C.; Sun, G.; Ma, S.; Yang, X. Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Xie, W.; Song, S.; Zhang, Y.; Dong, L. In-situ growth and graphitization synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber. ACS Sustain. Chem. Eng. 2019, 7, 5318–5328. [Google Scholar] [CrossRef]
- Deng, L.; Han, M. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 2007, 91, 023119. [Google Scholar] [CrossRef]
- Shi, X.; Cao, M.; Yuan, J.; Fang, X. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009, 95, 163108. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M.; Hou, Z.; Song, W.; Zhang, L.; Lu, M.; Jin, H.; Fang, X.; Wang, W.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139. [Google Scholar] [CrossRef]
- Quan, B.; Liang, X.; Zhang, X.; Xu, G.; Ji, G.; Du, Y. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 2018, 10, 41535–41543. [Google Scholar] [CrossRef]
- Xie, P.; Li, H.; He, B.; Dang, F.; Lin, J.; Fan, R.; Hou, C.; Liu, H.; Zhang, J.; Ma, Y.; et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 2018, 6, 8812–8822. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Chen, Y.; Wu, X.; Zhang, W.; Luo, C.; Li, J. Design of hollow ZnFe2O4 microspheres@graphene decorated with TiO2 nanosheets as a high-performance low frequency absorber. Mater. Chem. Phys. 2017, 202, 184–189. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Hui, S.; Xiao, T.; Ge, S.; Hines, W.; Budnick, J.; Taylor, G. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002, 80, 4404–4406. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, G.; Wang, T.; Ouyang, Q.; Qi, L.; Ma, Y.; Gao, P.; Zhu, C.; Cao, M.; Jin, H. Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608. [Google Scholar] [CrossRef]
- Jian, X.; Xiao, X.; Deng, L.; Tian, W.; Wang, X.; Mahmood, N.; Dou, S. Heterostructured nanorings of Fe−Fe3O4@C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 9369–9378. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, H.; Zhao, J.; Ji, G.; Du, Y. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822. [Google Scholar] [CrossRef]
- Michielssen, E.; Sajer, J.; Ranjithan, S.; Mittra, R. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans. Microw. Theory Tech. 1993, 41, 1024–1031. [Google Scholar] [CrossRef]
- Su, Q.; Zhong, G.; Li, J.; Du, G.; Xu, B. Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties. Appl. Phys. A Mater. Sci. Process 2011, 106, 59–65. [Google Scholar] [CrossRef]
- Sun, X.; He, J.; Li, G.; Tang, J.; Wang, T.; Guo, Y.; Xue, H. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2013, 1, 765–777. [Google Scholar] [CrossRef]
- Wang, R.; He, M.; Zhou, Y.; Nie, S.; Wang, Y.; Liu, W.; He, Q.; Wu, W.; Bu, X.; Yang, X. Self-assembled 3D flower-like composites of heterobimetallic phosphides and carbon for temperature-tailored electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2019, 11, 38361–38371. [Google Scholar] [CrossRef]
- Xu, X.; Ran, F.; Fan, Z.; Lai, H.; Cheng, Z.; Lv, T.; Shao, L.; Liu, Y. Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 2019, 11, 13564–13573. [Google Scholar] [CrossRef]
- Wu, H.; Wu, G.; Ren, Y.; Yang, L.; Wang, L.; Li, X. Co2+/Co3+ Ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 2015, 3, 7677–7690. [Google Scholar] [CrossRef]
- Xu, W.; Pan, Y.; Wei, W.; Wang, G.; Qu, P. Microwave absorption enhancement and dual-nonlinear magnetic resonance of ultra small nickel with quasi-one-dimensional nanostructure. Appl. Surf. Sci. 2018, 428, 54–60. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Wang, S.; Yin, Z.; Zhu, J.; Guo, A.; Wang, G.; Yin, P.; Guo, L. Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J. Phys. Chem. C 2016, 120, 22019–22027. [Google Scholar] [CrossRef]
- Zou, C.; Yao, Y.; Wei, N.; Gong, Y.; Fu, W.; Wang, M.; Jiang, L.; Liao, X.; Yin, G.; Huang, Z.; et al. Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites. Compos. Part B Eng. 2015, 77, 209–214. [Google Scholar] [CrossRef]
- Han, M.; Yin, X.; Kong, L.; Li, M.; Duan, W.; Zhang, L.; Cheng, L. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Phys. Chem. A 2014, 2, 16403–16409. [Google Scholar] [CrossRef]
- Liu, P.; Huang, Y.; Sun, X. Excellent Electromagnetic Absorption Properties of Poly(3,4-ethylenedioxythiophene)-Reduced Graphene Oxide-Co3O4 Composites Prepared by a Hydrothermal Method. ACS Appl. Mater. Interfaces 2013, 5, 12355–12360. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, N.; Jiang, X.; Yu, L.; Li, X. Four novel 3D RE-MOFs based on maleic hydrazide: Syntheses, structural diversity, efficient electromagnetic wave absorption and antibacterial activity properties. Inorg. Chim. Acta 2020, 501, 119291. [Google Scholar] [CrossRef]
Samples | Loading (wt %) | RLmax (dB) | Thickness (mm) | EBDa (GHz) | Ref. |
---|---|---|---|---|---|
Ni/PVDF | 20 | −42.08 | 3 | 2.5 | [61] |
MoS2/PVDF | 25 | −26.11 | 2.5 | 3.44 | [62] |
Mesoporous Fe3O4/C | 40 | −18.0 | 2.0 | 2.0 | [63] |
Graphene/ZnO | 50 | −45.1 | 2.2 | 2.5 | [64] |
PEDOT/RGO/Co3O4 | 50 | −51.1 | 2.0 | 3.1 | [65] |
[Y2(MH)6]n·DMF | 20 | −22.78 | 5.0 | 2.24 | [66] |
Si(2)-rGO@Fe3O4/PVDF-co-HFP | 30 | −17.1 | 2.0 | 4.8 | This work |
Si(2)-rGO@Fe3O4/PVDF-co-HFP | 30 | −32.1 | 7.0 | 2.88 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Duan, Y.; Wang, C. Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe3O4/PVDF-co-HFP Composites. Materials 2020, 13, 933. https://doi.org/10.3390/ma13040933
Li Y, Duan Y, Wang C. Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe3O4/PVDF-co-HFP Composites. Materials. 2020; 13(4):933. https://doi.org/10.3390/ma13040933
Chicago/Turabian StyleLi, Yuexuan, Yugang Duan, and Chengmeng Wang. 2020. "Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe3O4/PVDF-co-HFP Composites" Materials 13, no. 4: 933. https://doi.org/10.3390/ma13040933
APA StyleLi, Y., Duan, Y., & Wang, C. (2020). Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe3O4/PVDF-co-HFP Composites. Materials, 13(4), 933. https://doi.org/10.3390/ma13040933