Scaling Concepts in Serpin Polymer Physics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proteins and Reagents
2.2. Polyacrylamide Gel Electrophoresis (PAGE)
2.3. Atomic Force Microscopy (AFM)
2.4. Static and Dynamic Light Scattering (LS)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.W.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W.; et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 2001, 276, 33293–33296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gettins, P.G.W. Serpin structure, mechanism, and function. Chem. Rev. 2002, 102, 4751–4803. [Google Scholar] [CrossRef] [PubMed]
- Whisstock, J.C.; Bottomley, S.P. Molecular gymnastics: Serpin structure, folding and misfolding. Curr. Opin. Struct. Biol. 2006, 16, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Gooptu, B.; Miranda, E.; Nobeli, I.; Mallya, M.; Purkiss, A.; Leigh Brown, S.C.; Summers, C.; Phillips, R.L.; Lomas, D.A.; Barrett, T.E. Crystallographic and Cellular Characterisation of Two Mechanisms Stabilising the Native Fold of 1-Antitrypsin: Implications for Disease and Drug Design. J. Mol. Biol. 2009, 387, 857–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longhurst, H.; Cicardi, M. Hereditary angio-oedema. Lancet 2012, 379, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Miranda, E.; Lomas, D.A. Neuroserpin: A serpin to think about. Cell. Mol. Life Sci. 2006, 63, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Noto, R.; Santangelo, M.G.; Levantino, M.; Cupane, A.; Rosalia, M.; Parisi, D.; Ricagno, S.; Bolognesi, M.; Manno, M.; Martorana, V. Biochimica et Biophysica Acta Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics. BBA Proteins Proteom. 2015, 1854, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.M.; Marciniak, S.J.; Teckman, J.; Ferrarotti, I.; Brantly, M.L.; Lomas, D.A.; Stoller, J.K.; McElvaney, N.G. α1-Antitripsin deficiency. Nat. Rev. Dis. Prim. 2016, 2, 16051. [Google Scholar] [CrossRef]
- Lomas, D.A.; Evans, D.L.; Finch, J.T.; Carrell, R.W. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 1992, 357, 605–607. [Google Scholar] [CrossRef]
- Lomas, D.A.; Mahadeva, R. α1-antitrypsin polymerization and the serpinopathies: Pathobiology and prospects for therapy. J. Clin. Investig. 2002, 110, 1585–1590. [Google Scholar] [CrossRef]
- Lomas, D.A.; Evans, D.L.; Stone, S.R.; Chang, W.S.; Carrell, R.W. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry 1993, 32, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, Y.; Kuri, B.; Sengupta, T.; Wintrode, P.L. The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry. J. Biol. Chem. 2008, 283, 30804–30811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekeowa, U.I.; Freeke, J.; Miranda, E.; Gooptu, B.; Bush, M.F.; Pérez, J.; Teckman, J.; Robinson, C.V.; Lomas, D.A. Defining the mechanism of polymerization in the serpinopathies. Proc. Natl. Acad. Sci. USA 2010, 107, 17146–17151. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, M.; Sendall, T.J.; Pearce, M.C.; Whisstock, J.C.; Huntington, J.A. Molecular basis of α 1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep. 2011, 12, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Irving, J.A.; Miranda, E.; Haq, I.; Perez, J.; Kotov, V.R.; Faull, S.V.; Motamedi-Shad, N.; Lomas, D.A. An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein. Biochem. J. 2015, 468, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motamedi-Shad, N.; Jagger, A.M.; Liedtke, M.; Faull, S.V.; Nanda, A.S.; Salvadori, E.; Wort, J.L.; Kay, C.W.M.; Heyer-Chauhan, N.; Miranda, E.; et al. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem. J. 2016, BCJ20160159. [Google Scholar] [CrossRef] [Green Version]
- Gaczynska, M.; Karpowicz, P.; Stuart, C.E.; Norton, M.G.; Teckman, J.H.; Marszal, E.; Osmulski, P.A. AFM imaging reveals topographic diversity of wild type and Z variant polymers of human α1-Proteinase inhibitor. PLoS ONE 2016, 11, e0151902. [Google Scholar] [CrossRef] [Green Version]
- Faull, S.V.; Elliston, E.L.K.; Gooptu, B.; Jagger, A.M.; Aldobiyan, I.; Redzej, A.; Badaoui, M.; Heyer-Chauhan, N.; Rashid, S.T.; Reynolds, G.M.; et al. The structural basis for Z α1-antitrypsin polymerisation in the liver. Sci. Adv. 2020, 6, eabc1370. [Google Scholar] [CrossRef]
- Yamasaki, M.; Li, W.; Johnson, D.J.D.; Huntington, J.A. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 2008, 455, 1255–1258. [Google Scholar] [CrossRef]
- Ricagno, S.; Pezzullo, M.; Barbiroli, A.; Manno, M.; Levantino, M.; Santangelo, M.G.; Bonomi, F.; Bolognesi, M. Two latent and two hyperstable polymeric forms of human neuroserpin. Biophys. J. 2010, 99, 3402–3411. [Google Scholar] [CrossRef]
- Santangelo, M.G.; Noto, R.; Levantino, M.; Cupane, A.; Ricagno, S.; Pezzullo, M.; Bolognesi, M.; Mangione, M.R.; Martorana, V.; Manno, M. On the molecular structure of human neuroserpin polymers. Proteins Struct. Funct. Bioinform. 2012, 80, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noto, R.; Santangelo, M.G.; Ricagno, S.; Mangione, M.R.; Levantino, M.; Pezzullo, M.; Martorana, V.; Cupane, A.; Bolognesi, M.; Manno, M. The tempered polymerization of human neuroserpin. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Miranda, E.; Ferrarotti, I.; Berardelli, R.; Laffranchi, M.; Cerea, M.; Gangemi, F.; Haq, I.; Ottaviani, S.; Lomas, D.A.; Irving, J.A.; et al. The pathological Trento variant of alpha-1-antitrypsin (E75V) shows nonclassical behaviour during polymerization. FEBS J. 2017, 284, 2110–2126. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Perez, J.; Mela, M.; Miranda, E.; Burling, K.A.; Rouhani, F.N.; DeMeo, D.L.; Haq, I.; Irving, J.A.; Ordóñez, A.; et al. Characterising the association of latency with α1-antitrypsin polymerisation using a novel monoclonal antibody. Int. J. Biochem. Cell Biol. 2015, 58, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, E.; Pérez, J.; Ekeowa, U.I.; Hadzic, N.; Kalsheker, N.; Gooptu, B.; Portmann, B.; Belorgey, D.; Hill, M.; Chambers, S.; et al. A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with α11-antitrypsin deficiency. Hepatology 2010, 52, 1078–1088. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, AZ, USA; London, UK, 1979. [Google Scholar]
- Belorgey, D.; Irving, J.A.; Ekeowa, U.I.; Freeke, J.; Roussel, B.D.; Miranda, E.; Pérez, J.; Robinson, C.V.; Marciniak, S.J.; Crowther, D.C.; et al. Characterisation of serpin polymers in vitro and in vivo. Methods 2011, 53, 255–266. [Google Scholar] [CrossRef]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics; John Wiley & Sons, Inc.: New York, NY, USA; London, UK; Sidney, Australia; Toronto, ON, Canada, 1990. [Google Scholar]
- Koppel, D.E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J. Chem. Phys. 1972, 57, 4814–4820. [Google Scholar] [CrossRef]
- Mailer, A.G.; Clegg, P.S.; Pusey, P.N. Particle sizing by dynamic light scattering: Non-linear cumulant analysis. J. Phys. Condens. Matter 2015, 27, 145102. [Google Scholar] [CrossRef] [Green Version]
- Frisken, B.J. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl. Opt. 2001, 40, 4087–4091. [Google Scholar] [CrossRef] [Green Version]
- Mast, A.; Enghild, J.J.; Salvesen, G. Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 1992, 31, 2720–2728. [Google Scholar] [CrossRef]
- Odin, C.; Aimeé, J.P.; El Kaakour, Z.; Bouhacina, T. Tip finite size effects on atomic force microscopy in the contact mode: Simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex ball. Surf. Sci. 1994, 317, 321–340. [Google Scholar] [CrossRef]
- Podestà, A.; Tiana, G.; Milani, P.; Manno, M. Early events in insulin fibrillization studied by time-lapse atomic force microscopy. Biophys. J. 2006, 90, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 6.2.0 Manual: A High-Level Interactive Language for Numerical Computations. Available online: http://www.gnu.org/software/octave/doc/v6.2.0/ (accessed on 8 March 2021).
- Haq, I.; Irving, J.A.; Faull, S.V.; Dickens, J.A.; Ordóñez, A.; Belorgey, D.; Gooptu, B.; Lomas, D.A. Reactive centre loop mutants of α1-antitrypsin reveal position-specific effects on intermediate formation along the polymerization pathway. Biosci. Rep. 2013, 33, e00046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.F.; Harrison, R.A.; Perkins, S.J. Structural comparisons of the native and reactive-centre-cleaved forms of α 1 -antitrypsin by neutron- and X-ray-scattering in solution. Biochem. J. 1990, 267, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, P.R.; Pei, X.Y.; Dafforn, T.R.; Lomas, D.A. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci. Publ. Protein Soc. 2000, 9, 1274–1281. [Google Scholar] [CrossRef]
- Lomas, D.A.; Finch, J.T.; Seyama, K.; Nukiwa, T.; Carrell, R.W. α1-Antitrypsin S(iiyama) (Ser53->Phe). J. Biol. Chem. 1993, 268, 15333–15335. [Google Scholar] [CrossRef]
- Lomas, D.A.; Elliott, P.R.; Sidhar, S.K.; Foreman, R.C.; Finch, J.T.; Cox, D.W.; Whisstock, J.C.; Carrell, R.W. α1-antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo: Evidence for the C sheet mechanism of polymerization. J. Biol. Chem. 1995, 270, 16864–16870. [Google Scholar] [CrossRef] [Green Version]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Jagger, A.M.; Waudby, C.A.; Irving, J.A.; Christodoulou, J.; Lomas, D.A. High-resolution ex vivo NMR spectroscopy of human Z α1-antitrypsin. Nat. Commun. 2020, 11, 6371. [Google Scholar] [CrossRef]
- Carrotta, R.; Manno, M.; Bulone, D.; Martorana, V.; San Biagio, P.L. Protofibril formation of amyloid β-protein at low pH via a non-cooperative elongation mechanism. J. Biol. Chem. 2005, 280, 30001–30008. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, H.; Fujii, M. Translational Friction Coefficient of Wormlike Chains. Macromolecules 1973, 6, 407–415. [Google Scholar] [CrossRef]
- Carrell, R.W.; Lomas, D.A.; Sidhar, S.; Foreman, R. α1-Antitrypsin Deficiency. A conformational disease. Chest 1996, 110, 243S–247S. [Google Scholar] [CrossRef]
- Saga, G.; Sessa, F.; Barbiroli, A.; Santambrogio, C.; Russo, R.; Sala, M.; Raccosta, S.; Martorana, V.; Caccia, S.; Noto, R.; et al. Embelin binds to human neuroserpin and impairs its polymerisation. Sci. Rep. 2016, 6, 18769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordóñez, A.; Pérez, J.; Tan, L.; Dickens, J.A.; Motamedi-Shad, N.; Irving, J.A.; Haq, I.; Ekeowa, U.; Marciniak, S.J.; Miranda, E.; et al. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. FASEB J. 2015, 29, 2667–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomas, D.A. Journal of the COPD Foundation Chronic Obstructive Pulmonary Diseases: New Therapeutic Targets for Alpha-1 Antitrypsin Deficiency. J. COPD Found. 2018, 5, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Lomas, D.A. Twenty Years of Polymers: A Personal Perspective on Alpha-1 Antitrypsin Deficiency. COPD J. Chronic Obstr. Pulm. Dis. 2013, 10, 17–25. [Google Scholar] [CrossRef] [PubMed]
Z AT | 1.8 ± 0.3 nm | 7.8 ± 1.6 nm | 3.2 ± 0.7 nm | 1.8 ± 0.2 nm | 5.3 ± 0.8 nm |
M AT | 1.8 ± 0.5 nm | 9.3 ± 1.5 nm | 3.1 ± 0.6 nm | 1.9 ± 0.4 nm | 5.4 ± 1.0 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raccosta, S.; Librizzi, F.; Jagger, A.M.; Noto, R.; Martorana, V.; Lomas, D.A.; Irving, J.A.; Manno, M. Scaling Concepts in Serpin Polymer Physics. Materials 2021, 14, 2577. https://doi.org/10.3390/ma14102577
Raccosta S, Librizzi F, Jagger AM, Noto R, Martorana V, Lomas DA, Irving JA, Manno M. Scaling Concepts in Serpin Polymer Physics. Materials. 2021; 14(10):2577. https://doi.org/10.3390/ma14102577
Chicago/Turabian StyleRaccosta, Samuele, Fabio Librizzi, Alistair M. Jagger, Rosina Noto, Vincenzo Martorana, David A. Lomas, James A. Irving, and Mauro Manno. 2021. "Scaling Concepts in Serpin Polymer Physics" Materials 14, no. 10: 2577. https://doi.org/10.3390/ma14102577
APA StyleRaccosta, S., Librizzi, F., Jagger, A. M., Noto, R., Martorana, V., Lomas, D. A., Irving, J. A., & Manno, M. (2021). Scaling Concepts in Serpin Polymer Physics. Materials, 14(10), 2577. https://doi.org/10.3390/ma14102577