A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites
Abstract
:1. Introduction
1.1. Recycled-Waste Fibers in Cement-Based Composites
1.2. Mechanical Properties of Fiber-Reinforced Composites
1.3. Effect of Waste Fiber-Reinforced Composites on the Environment
2. Importance and Significance of the Current Literature Review
3. Types of Waste Fibers Used in Cement-Based Composites
4. Mechanical Properties of Waste Fiber-Reinforced Cement-Based Composites
4.1. Compressive Strength
4.2. Flexural Strength
4.3. Splitting Tensile Strength
5. Durability Performance of Waste Fibers in Cement-Based Composites
6. Environmental Impact with the Use of Waste Fibers in Cement-Based Composites
7. Discussion on the Challenges and Future Work
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, D.R.; Calmon, J.L.; Coelho, F.Z. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr. Build. Mater. 2016, 124, 656–666. [Google Scholar] [CrossRef]
- Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.-H.J.; Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.C.; Li, V. Concrete Reinforcement with Recycled Fibers. J. Mater. Civ. Eng. 2000, 12, 314–319. [Google Scholar] [CrossRef]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Foti, D. Use of recycled waste pet bottles fibers for the reinforcement of concrete. Compos. Struct. 2013, 96, 396–404. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Constr. Build. Mater. 2016, 125, 800–808. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Effectiveness of hair and wave polypropylene fibers for concrete roads. Constr. Build. Mater. 2018, 166, 581–591. [Google Scholar] [CrossRef]
- Saulat, H.; Cao, M.; Khan, M.M.; Khan, M.; Khan, M.M.; Rehman, A. Preparation and applications of calcium carbonate whisker with a special focus on construction materials. Constr. Build. Mater. 2020, 236, 117613. [Google Scholar] [CrossRef]
- Balaguru, P.; Ramakrishnan, V. Properties of lightweight fiber reinforced concrete. Spec. Publ. 1987, 105, 305–322. [Google Scholar]
- Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled fibers in reinforced concrete: A systematic literature review. J. Clean. Prod. 2020, 248, 119207. [Google Scholar] [CrossRef]
- Anandamurthy, A.; Guna, V.; Ilangovan, M.; Reddy, N. A review of fibrous reinforcements of concrete. J. Reinf. Plast. Compos. 2017, 36, 519–552. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Rehman, A.; Ali, M. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr. Build. Mater. 2020, 244, 118382. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Rahmani, E.; Dehestani, M.; Beygi, M.H.A.; Allahyari, H.; Nikbin, I.M. On the mechanical properties of concrete containing waste PET particles. Constr. Build. Mater. 2013, 47, 1302–1308. [Google Scholar] [CrossRef]
- Al-Hadithi, A.I.; Noaman, A.T.; Mosleh, W.K. Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Compos. Struct. 2019, 224, 111021. [Google Scholar] [CrossRef]
- Al-Hadithi, A.I.; Hilal, N.N. The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers. J. Build. Eng. 2016, 8, 20–28. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Manag. 2018, 78, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Bhogayata, A.C.; Arora, N.K. Fresh and strength properties of concrete reinforced with metalized plastic waste fibers. Constr. Build. Mater. 2017, 146, 455–463. [Google Scholar] [CrossRef]
- Aiello, M.; Leuzzi, F.; Centonze, G.; Maffezzoli, A. Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength. Waste Manag. 2009, 29, 1960–1970. [Google Scholar] [CrossRef]
- Martinelli, E.; Caggiano, A.; Xargay, H. An experimental study on the post-cracking behaviour of Hybrid Industrial/Recycled Steel Fibre-Reinforced Concrete. Constr. Build. Mater. 2015, 94, 290–298. [Google Scholar] [CrossRef]
- Zamanzadeh, Z.; Lourenço, L.; Barros, J. Recycled Steel Fibre Reinforced Concrete failing in bending and in shear. Constr. Build. Mater. 2015, 85, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Leone, M.; Centonze, G.; Colonna, D.; Micelli, F.; Aiello, M. Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour. Constr. Build. Mater. 2018, 161, 141–155. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Scrap tire steel fiber as a substitute for commercial steel fiber in cement mortar: Engineering properties and cost-benefit analyses. Resour. Conserv. Recycl. 2018, 134, 248–256. [Google Scholar] [CrossRef]
- Shahjalal, M.; Islam, K.; Rahman, J.; Ahmed, K.S.; Karim, M.R.; Billah, A.M. Flexural response of fiber reinforced concrete beams with waste tires rubber and recycled aggregate. J. of Clean. Prod. 2021, 278, 123842. [Google Scholar] [CrossRef]
- Sengul, O. Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires. Constr. Build. Mater. 2016, 122, 649–658. [Google Scholar] [CrossRef]
- Al-Kamyani, Z.; Figueiredo, F.P.; Hu, H.; Guadagnini, M.; Pilakoutas, K. Shrinkage and flexural behaviour of free and restrained hybrid steel fibre reinforced concrete. Constr. Build. Mater. 2018, 189, 1007–1018. [Google Scholar] [CrossRef] [Green Version]
- Liew, K.; Akbar, A. The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 2020, 232, 117232. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, M. Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres. J. Clean. Prod. 2020, 259, 120914. [Google Scholar] [CrossRef]
- Al-Hadithi, A.I.; Abbas, M.A. The effects of adding waste plastic fibers on the mechanical properties and shear strength of reinforced concrete beams. Iraqi J. Civ. Eng. 2018, 12, 110–124. [Google Scholar]
- Thirumurugan, A.; Sivaraja, M. Workability and Strength Properties of Hybrid Fibre Reinforced Concrete from Industrial Waste. Asian J. Civ. Eng. 2013, 14, 477–485. [Google Scholar]
- Mohammadhosseini, H.; Alyousef, R.; Lim, N.H.A.S.; Tahir, M.M.; Alabduljabbar, H.; Mohamed, A.M.; Samadi, M. Waste metalized film food packaging as low cost and ecofriendly fibrous materials in the production of sustainable and green concrete composites. J. Clean. Prod. 2020, 258, 120726. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Tahir, M.M.; Sam, A.R.M. The feasibility of improving impact resistance and strength properties of sustainable concrete composites by adding waste metalized plastic fibres. Constr. Build. Mater. 2018, 169, 223–236. [Google Scholar] [CrossRef]
- Vilkner, G.; Meyer, C.; Shimanovich, S. Properties of glass concrete containing recycled carpet fibers. In Proceedings of the 6th International RILEM Symposium on Fibre-Reinforced concretes, Varenna, Italy, 20–22 September 2004; pp. 1431–1440. [Google Scholar]
- Mohammadhosseini, H.; Awal, A. Physical and Mechanical Properties of Concrete Containing Fibers from Industrial Carpet Waste; Universiti Teknologi Malaysia: Johor, Malaysia, 2014. [Google Scholar]
- Awal, A.A.; Mohammadhosseini, H. Green concrete production incorporating waste carpet fiber and palm oil fuel ash. J. Clean. Prod. 2016, 137, 157–166. [Google Scholar] [CrossRef]
- Marthong, C.; Marthong, S. An experimental study on the effect of PET fibers on the behavior of exterior RC beamcolumn connection subjected to reversed cyclic loading. Structures 2016, 5, 175–185. [Google Scholar] [CrossRef]
- Al-Tulaian, B.; Al-Shannag, M.; Al-Hozaimy, A. Recycled plastic waste fibers for reinforcing Portland cement mortar. Constr. Build. Mater. 2016, 127, 102–110. [Google Scholar] [CrossRef]
- Pešić, N.; Živanović, S.; Garcia, R.; Papastergiou, P. Mechanical properties of concrete reinforced with recycled HDPE plastic fibres. Constr. Build. Mater. 2016, 115, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Ochi, T.; Okubo, S.; Fukui, K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 2007, 29, 448–455. [Google Scholar] [CrossRef]
- Borg, R.P.; Baldacchino, O.; Ferrara, L. Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Constr. Build. Mater. 2016, 108, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Mehvish, F.; Ahmed, A.; Saleem, M.M.; Saleem, M.A. Characterization of Concrete Incorporating Waste Polythene Bags Fibers. Pak. J. Eng. Appl. Sci. 2020, 26, 93–101. [Google Scholar]
- Foti, D. Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr. Build. Mater. 2011, 25, 1906–1915. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Awal, A.A.; Yatim, J.M. The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres. Constr. Build. Mater. 2017, 143, 147–157. [Google Scholar] [CrossRef]
- Awal, A.; Mohammadhosseini, H.; Hossain, M.Z. Strength, modulus of elasticity and shrinkage behaviour of concrete containing waste carpet fiber. Int. J. GEOMATE 2015, 9, 1441–1446. [Google Scholar]
- Elkington, J. Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 1998, 8, 37–51. [Google Scholar] [CrossRef]
- Ding, G.K. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Myers, D. A review of construction companies’ attitudes to sustainability. Constr. Manag. Econ. 2005, 23, 781–785. [Google Scholar] [CrossRef]
- Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N. Environmental assessment of green concretes for structural use. J. Clean. Prod. 2017, 154, 633–649. [Google Scholar] [CrossRef]
- Khasreen, M.M.; Banfill, P.F.G.; Menzies, G.F. Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability 2009, 1, 674–701. [Google Scholar] [CrossRef]
- Gursel, A.P.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Henry, M.; Kato, Y. Understanding the regional context of sustainable concrete in Asia: Case studies in Mongolia and Singapore. Resour. Conserv. Recycl. 2014, 82, 86–93. [Google Scholar] [CrossRef]
- Sadrolodabaee, P.; Claramunt, J.; Ardanuy, M.; de la Fuente, A. Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Stud. Constr. Mater. 2021, 14, e00492. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Preston, F.; Lehne, J. Making Concrete Change Innovation in Low-Carbon Cement and Concrete; Chatham House—The Royal Institute of International Affairs: London, UK, 2018. [Google Scholar]
- Nguyen, W.; Martinez, D.M.; Jen, G.; Duncan, J.F.; Ostertag, C.P. Interaction between global warming potential, durability, and structural properties of fiber-reinforced concrete with high waste materials inclusion. Resour. Conserv. Recycl. 2021, 169, 105453. [Google Scholar] [CrossRef]
- Turk, J.; Cotič, Z.; Mladenovič, A.; Šajna, A. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag. 2015, 45, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Van den Heede, P.; de Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Khalid, F.; Irwan, J.; Ibrahim, M.W.; Othman, N.; Shahidan, S. Performance of plastic wastes in fiber-reinforced concrete beams. Constr. Build. Mater. 2018, 183, 451–464. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the Circular Economy, Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2013; pp. 21–34. [Google Scholar]
- Nations, U. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations; Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- Ahmed, H.U.; Faraj, R.H.; Hilal, N.; Mohammed, A.A.; Sherwani, A.F.H. Use of recycled fibers in concrete composites: A systematic comprehensive review. Compos. Part B Eng. 2021, 215, 108769. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Thomas, B.S.; Damare, A.; Gupta, R. Strength and durability characteristics of copper tailing concrete. Constr. Build. Mater. 2013, 48, 894–900. [Google Scholar] [CrossRef]
- Shahbazpanahi, S.; Faraj, R.H. Feasibility study on the use of shell sunflower ash and shell pumpkin ash as supplementary cementitious materials in concrete. J. Build. Eng. 2020, 30, 101271. [Google Scholar] [CrossRef]
- Abbasi, S.; Jannaty, M.H.; Faraj, R.H.; Panahi, S.S.; Mosavi, A. The Effect of Incorporating Silica Stone Waste on the Mechanical Properties of Sustainable Concretes. Materials 2020, 13, 3832. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Panesar, D.K. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J. Clean. Prod. 2014, 82, 125–131. [Google Scholar] [CrossRef]
- Boiny, H.U.; Alshkane, Y.M.; Rafiq, S.K. Mechanical properties of cement mortar by using polyethylene terephthalate fibers. In Proceedings of the 5th National and 1st International Conference on Modern Materials and Structures in Civil Engineering, Teheran, Iran, 26–27 October 2016. [Google Scholar]
- Alshkane, Y.; Rafiq, S.; Boiny, H. Correlation between Destructive and Non-Destructive Tests on the Mechanical Properties of Different Cement Mortar Mixtures incorporating Polyethylene Terephthalate Fibers. Sulaimani J. Eng. Sci. 2014, 1. [Google Scholar] [CrossRef]
- Al-Hadithi, A.; Abdulrahman, M.; Al-Rawi, M.I. Flexural behaviour of reinforced concrete beams containing waste plastic fibers. IOP Conf. Series Mater. Sci. Eng. 2020, 737, 12173. [Google Scholar] [CrossRef]
- Atlaoui, D.; Bouafia, Y. Experimental characterization of concrete beams elements reinforced by long fiber chips. J. Adhes. Sci. Technol. 2016, 31, 1–14. [Google Scholar] [CrossRef]
- Fraternali, F.; Ciancia, V.; Chechile, R.; Rizzano, G.; Feo, L.; Incarnato, L. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos. Struct. 2011, 93, 2368–2374. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Lim, N.H.A.S.; Sam, A.R.M.; Samadi, M. Effects of Elevated Temperatures on Residual Properties of Concrete Reinforced with Waste Polypropylene Carpet Fibres. Arab. J. Sci. Eng. 2017, 43, 1673–1686. [Google Scholar] [CrossRef]
- Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H. Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr. Build. Mater. 2020, 252, 118997. [Google Scholar] [CrossRef]
- Meza, A.; Pujadas, P.; Meza, L.M.; Pardo-Bosch, F.; López-Carreño, R.D. Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study. Materials 2021, 14, 240. [Google Scholar] [CrossRef]
- Signorini, C.; Volpini, V. Mechanical Performance of Fiber Reinforced Cement Composites Including Fully-Recycled Plastic Fibers. Fibers 2021, 9, 16. [Google Scholar] [CrossRef]
- Alrshoudi, F.; Mohammadhosseini, H.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.; Alsaif, A. Sustainable Use of Waste Polypropylene Fibers and Palm Oil Fuel Ash in the Production of Novel Prepacked Aggregate Fiber-Reinforced Concrete. Sustainability 2020, 12, 4871. [Google Scholar] [CrossRef]
- Xuan, W.; Chen, X.; Yang, G.; Dai, F.; Chen, Y. Impact behavior and microstructure of cement mortar incorporating waste carpet fibers after exposure to high temperatures. J. Clean. Prod. 2018, 187, 222–236. [Google Scholar] [CrossRef]
- Zareei, S.A.; Ameri, F.; Bahrami, N.; Shoaei, P.; Musaeei, H.R.; Nurian, F. Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties. J. Build. Eng. 2019, 26, 100914. [Google Scholar] [CrossRef]
- Shewalul, Y.W. Experimental study of the effect of waste steel scrap as reinforcing material on the mechanical properties of concrete. Case Stud. Constr. Mater. 2021, 14, e00490. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, D.J.; Kim, M.O. Mechanical behavior of waste fishing net fiber-reinforced cementitious composites subjected to direct tension. J. Build. Eng. 2021, 33, 101622. [Google Scholar] [CrossRef]
- Golpasand, G.B.; Farzam, M.; Shishvan, S.S. Behavior of recycled steel fiber reinforced concrete under uniaxial cyclic compression and biaxial tests. Constr. Build. Mater. 2020, 263, 120664. [Google Scholar] [CrossRef]
- Sotoudeh, M.H.; Jalal, M. Effects of waste steel fibers on strength and stress-strain behavior of concrete incorporating silica nanopowder. Indian J. Sci. Technol. 2013, 6, 5411–5417. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.; Abdollahnejad, Z.; Illikainen, M. Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers. Compos. Part B Eng. 2018, 151, 186–200. [Google Scholar] [CrossRef]
- Smrkić, M.F.; Damjanović, D.; Baričević, A. Application of recycled steel fibres in concrete elements subjected to fatigue loading. J. Croat. Assoc. Civ. Eng. 2017, 69, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Tlemat, H.; Pilakoutas, K.; Neocleous, K. Stress-strain characteristic of SFRC using recycled fibres. Mater. Struct. 2006, 39, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Krolo, J.; Damjanovic, D.; Duvnjak, I.; Bjegovic, D.; Lakusic, S.; Baricevic, A. Innovative low cost fibre-reinforced concrete, Part II: Fracture toughness and impact strength. In Proceedings of the 3rd Concrete Repair, Rehabilitation and Retrofitting, Cape Town, South Africa, 3–5 September 2012; p. 204. [Google Scholar]
- Vistos, L.; Galladini, D.; Xargay, H.; Caggiano, A.; Folino, P.; Martinelli, E. Hybrid Industrial/Recycled SFRC: Experimental Analysis and Design. In Proceedings of the Conference on Italian Concrete Days, Rome, Italy, 27–28 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 98–112. [Google Scholar]
- Spinella, N. Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups. Comput. Concr. 2013, 11, 365–382. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.; Illikainen, M. Development of eco-efficient and cost-effective reinforced self-consolidation concretes with hybrid industrial/recycled steel fibers. Constr. Build. Mater. 2018, 166, 214–226. [Google Scholar] [CrossRef]
- Bensaci, H.; Menadi, B.; Kenai, S. Comparison of some Fresh and Hardened Properties of Self-Consolidating Concrete Composites Containing Rubber and Steel Fibers Recovered from Waste Tires. Nano Hybrids Compos. 2019, 24, 8–13. [Google Scholar] [CrossRef]
- Centonze, G.; Leone, M.; Aiello, M. Steel fibers from waste tires as reinforcement in concrete: A mechanical characterization. Constr. Build. Mater. 2012, 36, 46–57. [Google Scholar] [CrossRef]
- Graeff, A.G.; Pilakoutas, K.; Neocleous, K.; Peres, M.V.N. Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres. Eng. Struct. 2012, 45, 385–395. [Google Scholar] [CrossRef]
- Groli, G.; Pérez-Caldentey, A.; Soto, A.G. Cracking performance of SCC reinforced with recycled fibres—An experimental study. Struct. Concr. 2014, 15, 136–153. [Google Scholar] [CrossRef]
- Aghaee, K.; Yazdi, M.A.; Tsavdaridis, K.D. Investigation into the mechanical properties of structural lightweight concrete reinforced with waste steel wires. Mag. Concr. Res. 2015, 67, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.F.; Niu, X.J.; Long, Q.Q. Experimental Study of Strengthening and Toughening for Recycled Steel Fiber Reinforced Ultra-High Performance Concrete. Key Eng. Mater. 2014, 629, 104–111. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Constr. Build. Mater. 2016, 125, 196–209. [Google Scholar] [CrossRef]
- Atoyebi, O.; Odeyemi, S.O.; Bello, S.A.; Ogbeifun, C.O. Splitting tensile strength assessment of lightweight foamed concrete reinforced with waste tyre steel fibres. Int. J. Civ. Eng. Technol. 2018, 9, 1129–1137. [Google Scholar]
- Dehghanpour, H.; Yılmaz, K. Mechanical and Impact Behavior on Recycled Steel Fiber Reinforced Cementitious Mortars. Sci. Her. Voronezh State Univ. Archit. Civ. Eng. 2018, 39, 67–84. [Google Scholar]
- Drdlová, M.; Sviták, O.; Bibora, P.; Popovič, M.; Čechmánek, R. Blast Resistance of Slurry Infiltrated Fibre Concrete with Waste Steel Fibres from Tires. In Proceedings of the MATEC Web of Conferences, Rabat, Morocco, 14 February 2018; EDP Sciences: Les Ulis, France, 2018; Volume 149, p. 01060. [Google Scholar]
- Fauzan, F.A.I.; Sandi, R.; Syah, N.; Melinda, A.P. The effects of steel fibers extracted from waste tyre on concrete containing palm oil fuel ash. Int. J. 2018, 14, 142–148. [Google Scholar] [CrossRef]
- Köroğlu, M.A. Necmettin Erbakan University Behavior of composite self-compacting concrete (SCC) reinforced with steel wires from waste tires. Rev. Construcción 2019, 17, 484–498. [Google Scholar] [CrossRef]
- Sengul, O. Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers. Constr. Build. Mater. 2018, 186, 1082–1091. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Suchorzewski, J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Constr. Build. Mater. 2018, 183, 283–299. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.; Abdollahnejad, Z.; Nematollahi, B.; Sanjayan, J.; Illikainen, M. A comparison of the effects of pozzolanic binders on the hardened-state properties of high-strength cementitious composites reinforced with waste tire fibers. Compos. Part B Eng. 2019, 162, 134–153. [Google Scholar] [CrossRef]
- Guemidi, I.; Abdelaziz, Y.; Nebbou, A. High-performance concrete reinforced with fibres from waste. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2015, 168, 158–165. [Google Scholar] [CrossRef]
- Angelakopoulos, H.; Neocleous, K.; Pilakoutas, K. Uniaxial compressive behaviour of steel fibre reinforced roller compacted concrete. In Proceedings of the 6th International Conference Fibre Concrete, Prague, Czech Republic, 1 September 2011. [Google Scholar]
- Caggiano, A.; Folino, P.; Lima, C.; Martinelli, E.; Pepe, M. On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fibers. Constr. Build. Mater. 2017, 147, 286–295. [Google Scholar] [CrossRef]
- Muscalu, M.T.; Radu, A.; Taranu, N.; Budescu, M.; Lungu, I. Innovative Technologies and Logistical Solutions for the Reuse of Demolished Concrete in the Construction of Cement Concrete Pavements. Adv. Eng. Forum 2013, 8, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Papastergiou, P.; Angelakopoulos, H.; Guadagnini, M.; Pilakoutas, K. Mechanical properties of SFRC using blended manufactured and recycled tyre steel fibres. Constr. Build. Mater. 2018, 163, 376–389. [Google Scholar] [CrossRef]
- Hu, H.; Papastergiou, P.; Angelakopoulos, H.; Guadagnini, M.; Pilakoutas, K. Mechanical properties of SFRC using blended Recycled Tyre Steel Cords (RTSC) and Recycled Tyre Steel Fibres (RTSF). Constr. Build. Mater. 2018, 187, 553–564. [Google Scholar] [CrossRef]
- Centonze, G.; Leone, M.; Micelli, F.; Aiello, M.; Petito, G. Concrete reinforced with recycled steel fibres from scrap tires: A case study. In Proceedings of the 8th International Conference Fibre Concrete, Prague, Czech Republic, 10–11 September 2015; Volume 3, pp. 121–125. [Google Scholar]
- Thomas, L.M.; Moosvi, S.A. Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Mater. Today Proc. 2020, 32, 632–637. [Google Scholar] [CrossRef]
- Khatab, H.R.; Mohammed, S.J.; Hameed, L.A. Mechanical Properties of Concrete Contain Waste Fibers of Plastic Straps. IOP Conf. Series Mater. Sci. Eng. 2019, 557, 012059. [Google Scholar] [CrossRef]
- Fraternali, F.; Spadea, S.; Berardi, V.P. Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Constr. Build. Mater. 2014, 61, 293–302. [Google Scholar] [CrossRef]
- Jain, A.; Siddique, S.; Gupta, T.; Jain, S.; Sharma, R.K.; Chaudhary, S. Evaluation of concrete containing waste plastic shredded fibers: Ductility properties. Struct. Concr. 2021, 22, 566–575. [Google Scholar] [CrossRef]
- Orasutthikul, S.; Unno, D.; Yokota, H. Effectiveness of recycled nylon fiber from waste fishing net with respect to fiber reinforced mortar. Constr. Build. Mater. 2017, 146, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Aziz, K.I. Mechanical properties for ordinary concrete containing waste plastic fibers. Iraqi J. Civ. Eng. 2017, 11, 33–34. [Google Scholar]
- Nibudey, R.; Nagarnaik, P.; Parbat, D.; Pande, A. Strength and fracture properties of post consumed waste plastic fiber reinforced concrete. Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2013, 3, 9–16. [Google Scholar]
- Yin, S.; Tuladhar, R.; Riella, J.; Chung, D.; Collister, T.; Combe, M.; Sivakugan, N. Comparative evaluation of virgin and recycled polypropylene fibre reinforced concrete. Constr. Build. Mater. 2016, 114, 134–141. [Google Scholar] [CrossRef]
- Karahan, O.; Atis, C. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar] [CrossRef]
- Ozger, O.; Girardi, F.; Giannuzzi, G.; Salomoni, V.; Majorana, C.; Fambri, L.; Baldassino, N.; Di Maggio, R. Effect of nylon fibres on mechanical and thermal properties of hardened concrete for energy storage systems. Mater. Des. 2013, 51, 989–997. [Google Scholar] [CrossRef]
- Ghosni, N.; Samali, B.; Vessalas, K. Evaluation of mechanical properties of carpet fibre reinforced concrete. In From Materials to Structures: Advancement through Innovation; CRC Press: Boca Raton, FL, USA, 2012; pp. 275–279. [Google Scholar]
- Simalti, A.; Singh, A. Comparative study on performance of manufactured steel fiber and shredded tire recycled steel fiber reinforced self-consolidating concrete. Constr. Build. Mater. 2021, 266, 121102. [Google Scholar] [CrossRef]
- De Oliveira, L.A.P.; Castro-Gomes, J.P. Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Constr. Build. Mater. 2011, 25, 1712–1717. [Google Scholar] [CrossRef]
- Raghatate Atul, M. Use of plastic in a concrete to improve its properties. Int. J. Adv. Eng. Res. Stud. 2012, 1, 109–111. [Google Scholar]
- Nili, M.; Afroughsabet, V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 2010, 37, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Nili, M.; Afroughsabet, V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 2010, 24, 927–933. [Google Scholar] [CrossRef]
- Wang, Y. Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polym. Plast. Technol. Eng. 1999, 38, 533–546. [Google Scholar] [CrossRef]
- Awal, A.S.M.A.; Ab Kadir, M.A.; Yee, L.L.; Memon, N. Strength and Deformation Behaviour of Concrete Incorporating Steel Fibre from Recycled Tyre. In InCIEC 2014; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; pp. 109–117. [Google Scholar]
- Fauzan, I.F.; Ismail, F.A.; Sandi, R.; Al Jauhari, Z. The Influence of Steel Fibers Extracted from Waste Tyre on Properties of Concrete Containing Fly Ash. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 2232–2236. [Google Scholar] [CrossRef]
- Penga, G.; Yang1b, J.; Long1c, Q.; Niu1d, X.; Zeng1e, Q. Comparison between Ultra-High-Performance Concretes with Recycled Steel Fiber and Normal Industrial Steel Fiber. In Proceedings of the 4th International Conference on Sustainable Construction Materials and Technologies, Las Vegas, NV, USA, 7–11 August 2016. [Google Scholar]
- Cheng, Z.-X.; Wang, X.-G.; Yang, J.-H. Experimental study on recycled steel fiber concrete. In Proceedings of the 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 2215–2218. [Google Scholar]
- Centonze, G.; Leone, M.; Vasanelli, E.; Aiello, M.A. Interface Analysis between Steel Bars and Recycled Steel Fiber Reinforced Concrete. In Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain, 10–14 March 2013. [Google Scholar]
- Farhan, A.H.; Dawson, A.R.; Thom, N.H. Recycled hybrid fiber-reinforced & cement-stabilized pavement mixtures: Tensile properties and cracking characterization. Constr. Build. Mater. 2018, 179, 488–499. [Google Scholar] [CrossRef]
- Jomaa’h, M.; Khazaal, A.; Ahmed, S. Effect of replacing the main reinforcement by steel fibers on flexural behavior of one-way concrete slabs. In Proceedings of the MATEC Web of Conferences, Sharm El-Sheikh, Egypt, 23–25 October 2018; EDP Sciences: Les Ulis, France, 2018; Volume 162, p. 4010. [Google Scholar]
- Sarabi, S.; Bakhshi, H.; Sarkardeh, H.; Nikoo, H.S. Thermal stress control using waste steel fibers in massive concretes. Eur. Phys. J. Plus 2017, 132, 491. [Google Scholar] [CrossRef]
- Farhan, A.H.; Dawson, A.R.; Thom, N.H. Damage propagation rate and mechanical properties of recycled steel fiber-reinforced and cement-bound granular materials used in pavement structure. Constr. Build. Mater. 2018, 172, 112–124. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Frazão, C.; Caggiano, A.; Folino, P.; Martinelli, E.; Xargay, H.; Zamanzadeh, Z.; Lourenço, L. Cementitious Composites Reinforced with Recycled Fibres. In CoDesign for Public-Interest Services; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 141–195. [Google Scholar]
- Bdour, A.N.; Al-Khalayleh, Y.A. Innovative application of scrap-tire steel cords in concrete mixes. Jordan J. Civ. Eng. 2010, 4, 55–61. [Google Scholar]
- Papakonstantinou, C.G.; Tobolski, M.J. Use of waste tire steel beads in Portland cement concrete. Cem. Concr. Res. 2006, 36, 1686–1691. [Google Scholar] [CrossRef]
- Awal, A.A.; Yee, L.L.; Hossain, M.Z. Fresh and hardened properties of concrete containing steel fibre from recycled tire. Malays. J. Civ. Eng. 2013, 25, 20–32. [Google Scholar]
- Wong, S.-F.; Ting, S.-K. Use of recycled rubber tires in normal-and high-strength concretes. ACI Mater. J. 2009, 106, 325. [Google Scholar]
- Alsaif, A.; Koutas, L.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Constr. Build. Mater. 2018, 172, 533–543. [Google Scholar] [CrossRef]
- Muscalu, M.T.; Radu, A.; Budescu, M.; Taranu, N.; Florescu, E. Use of Recycled Materials in the Construction of Roller Compacted Concrete (RCC) Pavements. Adv. Mater. Res. 2013, 649, 262–265. [Google Scholar] [CrossRef]
- Frazão, C.; Díaz, B.; Barros, J.; Bogas, J.A.; Toptan, F. An experimental study on the corrosion susceptibility of Recycled Steel Fiber Reinforced Concrete. Cem. Concr. Compos. 2019, 96, 138–153. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Rahim, A.A.F. Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Constr. Build. Mater. 2020, 244, 118350. [Google Scholar] [CrossRef]
- Pelisser, F.; Montedo, O.R.K.; Gleize, P.; Roman, H.R. Mechanical properties of recycled PET fibers in concrete. Mater. Res. 2012, 15, 679–686. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos. Part B Eng. 2016, 92, 360–376. [Google Scholar] [CrossRef]
- Hsie, M.; Tu, C.; Song, P. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
- Söylev, T.A.; Özturan, T. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Constr. Build. Mater. 2014, 73, 67–75. [Google Scholar] [CrossRef]
- Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. Enhancement of mechanical properties in polypropylene and nylon-fibre reinforced oil palm shell concrete. Mater. Des. 2013, 49, 1034–1041. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. Fresh and Hardened Properties of Self-Compacting Concrete Reinforced with Hybrid Recycled Steel–Polypropylene Fiber. J. Mater. Civ. Eng. 2017, 29, 04017012. [Google Scholar] [CrossRef]
- Najim, K.B.; Saeb, A.; Al-Azzawi, Z. Structural behaviour and fracture energy of recycled steel fibre self-compacting reinforced concrete beams. J. Build. Eng. 2018, 17, 174–182. [Google Scholar] [CrossRef]
- Toghroli, A.; Shariati, M.; Sajedi, F.; Ibrahim, Z.; Koting, S.; Mohamad, E.T.; Khorami, M. A review on pavement porous concrete using recycled waste materials. Smart Struct. Syst. 2018, 22, 433–440. [Google Scholar]
- Caldentey, A.P.; Vila, J.G.; González, J.O.; Rodríguez, F. Contributing to sustainability of concrete by using steel fibres from recycled tyres in water retaining structures. In Proceedings of the II International Conference on Concrete Sustainability, Madrid, Spain, 13–15 June 2016; Int Center Numerical Methods Engineering: Barcelona, Spain, 2016; p. 87. [Google Scholar]
- Graeff, Â.G.; Pilakoutas, K.; Lynsdale, C.; Neocleous, K. Corrosion durability of recycled steel fibre reinforced concrete. Intersections 2009, 6, 77–87. [Google Scholar]
- Frazão, C.; Barros, J.; Camões, A.; Alves, A.C.; Rocha, L. Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete. Cem. Concr. Res. 2016, 79, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Balouch, S.; Forth, J.; Granju, J.-L. Surface corrosion of steel fibre reinforced concrete. Cem. Concr. Res. 2010, 40, 410–414. [Google Scholar] [CrossRef]
- Someh, A.K.; Saeki, N.; Notoya, T. Corrosion protection of reinforced concrete members by using recycled steel. In Proceedings of the International Conference on Solid Waste Technology and Management, Philadelphia, PA, USA, 17–20 November 1996; p. 8. [Google Scholar]
- Graeff, A.; Pilakoutas, K.; Neocleous, K.; Lynsdale, C. Behaviour of concrete reinforced with recycled steel fibres exposed to chloride contaminated environment. In Proceedings of the 6th International Conference Fibre Concrete, Prague, Czech Republic, 8–9 September 2011. [Google Scholar]
- Alsaif, A.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Durability of steel fibre reinforced rubberised concrete exposed to chlorides. Constr. Build. Mater. 2018, 188, 130–142. [Google Scholar] [CrossRef]
- Bjegovic, D.; Baricevic, A.; Lakusic, S. Innovative low cost fiber-reinforced concrete. Part I: Mechanical and durability properties. In Proceedings of the 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, Cape Town, South Africa, 3–5 September 2021; CRC Press/Balkema: Boca Raton, FL, USA, 2012. [Google Scholar]
- Won, J.-P.; Jang, C.-I.; Lee, S.-W.; Lee, S.-J.; Kim, H.Y. Long-term performance of recycled PET fibre-reinforced cement composites. Constr. Build. Mater. 2010, 24, 660–665. [Google Scholar] [CrossRef]
- Huang, B.; Wu, H.; Shu, X.; Burdette, E.G. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 2010, 24, 818–823. [Google Scholar] [CrossRef]
- Hesami, S.; Ahmadi, S.; Nematzadeh, M. Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 2014, 53, 680–691. [Google Scholar] [CrossRef]
- Pereira, E.L.; Junior, A.L.D.O.; Fineza, A.G. Optimization of mechanical properties in concrete reinforced with fibers from solid urban wastes (PET bottles) for the production of ecological concrete. Constr. Build. Mater. 2017, 149, 837–848. [Google Scholar] [CrossRef]
- Dar, U.N.; Salhotra, S. Effect of Metakao Bottles on Experimenta. Int. J. Civ. Eng. 2017, 8, 15–26. [Google Scholar]
- Rinu-Isah, R.; Shruthi, M. Utilization of waste PET bottle fibers in reinforced concrete. Int. J. Pure Appl. Math. 2017, 116, 579–584. [Google Scholar]
- Jandiyal, A.; Salhotra, S.; Sharma, R.; Nazir, U. A Review on using Fibers made from Waste PET Bottles in Concrete. Int. J. Civ. Eng. Technol. 2016, 7, 70–82. [Google Scholar]
- Vishnu, A.; Mohana, V.; Manasi, S.; Ponmalar, V. Use of polyethylene terephthalate in concrete—A brief review. Int. J. Civ. Eng. Technol. 2017, 8, 1171–1176. [Google Scholar]
- Khalid, F.S.; Juki, M.I.; Othman, N.; Ibrahim, M.H.W. Pull-out strength of polyethylene terephthalate bottle fibre in concrete matrix. Malays. Constr. Res. J. 2017, 21, 75–85. [Google Scholar]
- Usman, N.; Masirin, M.I.B.M.; Ahmad, K.A.; Wurochekke, A.A. Reinforcement of Asphalt Concrete Mixture using Recycle Polyethylene Terephthalate Fibre. Indian J. Sci. Technol. 2016, 9, 107143. [Google Scholar] [CrossRef]
- Foti, D. Innovative techniques for concrete reinforcement with polymers. Constr. Build. Mater. 2016, 112, 202–209. [Google Scholar] [CrossRef]
- Hama, S.M. Improving mechanical properties of lightweight Porcelanite aggregate concrete using different waste material. Int. J. Sustain. Built Environ. 2017, 6, 81–90. [Google Scholar] [CrossRef]
- Karanth, S.S.; Ghorpade, V.G.; Rao, H.S. Shear and impact strength of waste plastic fibre reinforced concrete. Adv. Concr. Constr. 2017, 5, 173–182. [Google Scholar] [CrossRef]
- Ghernouti, Y.; Rabehi, B.; Bouziani, T.; Ghezraoui, H.; Makhloufi, A. Fresh and hardened properties of self-compacting concrete containing plastic bag waste fibers (WFSCC). Constr. Build. Mater. 2015, 82, 89–100. [Google Scholar] [CrossRef]
- Sodhi, V.; Salhotra, S. Utilising wastes as partial replacement in concrete—A review. Int. J. Civ. Eng. Technol. 2017, 8, 636–641. [Google Scholar]
- Dinesh, Y.; Rao, C.H. Strength characteristics of fibre reinforced concrete using recycled PET. Int. J. Civ. Eng. Technol. 2017, 8, 92–99. [Google Scholar]
- Ghorpade, V.G.; Rao, H.S. The Behaviour of Self Compacting Concrete with Waste Plastic Fibers When Subjected to Chloride Attack. Mater. Today Proc. 2018, 5, 1501–1508. [Google Scholar] [CrossRef]
- Gu, L.; Ozbakkaloglu, T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016, 51, 19–42. [Google Scholar] [CrossRef]
- Sharma, R.; Bansal, P.P. Use of different forms of waste plastic in concrete—A review. J. Clean. Prod. 2016, 112, 473–482. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. J. Clean. Prod. 2009, 17, 821–829. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Yatim, J.M.; Sam, A.R.M.; Awal, A.A. Durability performance of green concrete composites containing waste carpet fibers and palm oil fuel ash. J. Clean. Prod. 2017, 144, 448–458. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Yatim, J.M. Microstructure and residual properties of green concrete composites incorporating waste carpet fibers and palm oil fuel ash at elevated temperatures. J. Clean. Prod. 2017, 144, 8–21. [Google Scholar] [CrossRef]
- Kandasamy, R.; Murugesan, R. Fiber Reinforced Self Compacting Concrete Using Domestic Waste Plastics as Fibres. J. Eng. Appl. Sci. 2012, 7, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, R.; Murugesan, R. Fibre reinforced concrete using domestic waste plastics as fibres. ARPN J. Eng. Appl. Sci. 2011, 6, 75–82. [Google Scholar]
- Al-Tikrite, A.; Hadi, M.N. Mechanical properties of reactive powder concrete containing industrial and waste steel fibres at different ratios under compression. Constr. Build. Mater. 2017, 154, 1024–1034. [Google Scholar] [CrossRef] [Green Version]
- Nehdi, M.L.; Najjar, M.F.; Soliman, A.M.; Azabi, T.M. Novel eco-efficient Two-Stage Concrete incorporating high volume recycled content for sustainable pavement construction. Constr. Build. Mater. 2017, 146, 9–14. [Google Scholar] [CrossRef]
- Domski, J.; Katzer, J.; Zakrzewski, M.; Ponikiewski, T. Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. J. Clean. Prod. 2017, 158, 18–28. [Google Scholar] [CrossRef]
- Rashid, K.; Balouch, N. Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Struct. Concr. 2017, 18, 589–596. [Google Scholar] [CrossRef]
- Baricevic, A.; Bjegovic, D.; Skazlic, M. Hybrid fiber-reinforced concrete with unsorted recycled-tire steel fibers. J. Mater. Civ. Eng. 2017, 29, 06017005. [Google Scholar] [CrossRef]
- Ahmadi, M.; Farzin, S.; Hassani, A.; Motamedi, M. Mechanical properties of the concrete containing recycled fibers and aggregates. Constr. Build. Mater. 2017, 144, 392–398. [Google Scholar] [CrossRef]
- Ucar, M.; Wang, Y. Utilization of recycled post consumer carpet waste fibers as reinforcement in lightweight cementitious composites. Int. J. Cloth. Sci. Technol. 2011, 23, 242–248. [Google Scholar] [CrossRef]
- Cengiz, A.; Kaya, M.; Bayramgil, N.P. Flexural stress enhancement of concrete by incorporation of algal cellulose nanofibers. Constr. Build. Mater. 2017, 149, 289–295. [Google Scholar] [CrossRef]
- Sharma, A. Jaspreet Singh the Study of Strength Characteristic of Concrete by Adding Coir Fibre and Replacement of Steel Slag. Int. J. Mech. Eng. Technol. 2017, 8, 205–214. [Google Scholar]
- Sharma, S. Jaspreet Singh Impact of Partial Replacement of Cement with Rice Husk Ash and Proportionate Addition of Coconut Fibre on Concrete. Int. J. Mech. Eng. Technol. 2017, 8, 65–77. [Google Scholar]
- Manivel, S.; Kumar, S.N.; Prakashchandar, S.; Kumar, S.A. Experimental Study on Human hair fiber reinforced concrete with partial replacement of cement by GGBFS. Int. J. Civ. Eng. Technol. 2017, 8, 1123–1131. [Google Scholar]
- James, A.; Rasool, M.; Genesh, S. Effect of hair fibre and GGBS on various properties of concrete—An experimental study. Int. J. Civ. Eng. Technol. 2017, 8, 648–653. [Google Scholar]
- Liu, Y.; Zhang, Y.; Guo, Y.; Chu, P.K.; Tu, S. Porous Materials Composed of Flue Gas Desulfurization Gypsum and Textile Fiber Wastes. Waste Biomass Valorization 2017, 8, 203–207. [Google Scholar] [CrossRef]
- Serbanoiu, A.A.; Ciocan, V.; Dragoi, E.-N.; Curteanu, S.; Burlacu, A. Optimization of Glass Fibers Used as Disperse Reinforcement of Epoxy Polymer Concrete with Fly Ash. Environ. Eng. Manag. J. 2017, 16, 1115–1121. [Google Scholar] [CrossRef]
- Dehghan, A.; Peterson, K.; Shvarzman, A. Recycled glass fiber reinforced polymer additions to Portland cement concrete. Constr. Build. Mater. 2017, 146, 238–250. [Google Scholar] [CrossRef]
Fiber Name | Fiber Length (mm) | Fiber Diameter (mm) | Aspect Ratio | Content (%) | Compressive Strength (%) | Flexural Strength (%) | Tensile Strength (%) | Reference |
---|---|---|---|---|---|---|---|---|
Recycled steel fibers | 20 | 0.15 | 133 | 20 | −11.6 | 22.7 | 45.16 | [89] |
50 | 0.15 | 333 | 1.5 | 40 | 25 | - | [90] | |
55 | 0.125 | 440 | 1.5 | −9.3 | 40.5 | - | [91] | |
31.4 | 0.24 | 131 | 0.46 | 25.45 | −15 | - | [92] | |
22 | 0.2 | 110 | 6 | - | 23.07 | - | [93] | |
16.5 | - | - | 1 | 0 | - | −21.4 | [94] | |
50 | 1.2 | 42 | 0.75 | −8 | 40 | 28 | [95] | |
35 | 1 | 35 | 2.4 | 13.9 | - | 35.9 | [96] | |
40 | 0.15 | 267 | 0.75 | 18 | 25 | 30 | [97] | |
50 | 0.6 | 83 | 1.6 | 8.6 | 67.85 | 32.3 | [26] | |
20 | 0.18 | 111 | 0.6 | - | - | 14 | [98] | |
25 | 0.26 | 96 | 2 | 23.3 | 55.27 | - | [99] | |
35 | 0.2 | 175 | 10 | 0.66 | −7 | - | [100] | |
25.4 | 0.25 | 102 | 1 | 12.5 | 31.27 | 22.85 | [101] | |
60 | 0.27 | 222 | 4 | 26.7 | - | 78.6 | [102] | |
13.94 | 0.25 | 56 | 0.46 | −3 | - | −10 | [23] | |
208 | 2 | 104 | 4 | 1.8 | - | 172.8 | [103] | |
26.17 | 0.25 | 105 | 2 | 22.2 | 30 | 42.8 | [104] | |
26 | 0.258 | 101 | 0.23 | 19.95 | 15.87 | - | [20] |
Fiber Type | Recycling Source | Concrete Type | Impact on Sustainability | References |
---|---|---|---|---|
Polyethylene terephthalate (PET) | Bottles | Concrete | Yes | [167] |
Concrete | Yes | [168] | ||
Fiber Reinforced Concrete (FRC) | - | [169] | ||
- | [170] | |||
- | [41] | |||
Plastic Fiber Reinforced Concrete (PFRC) | Yes | [171] | ||
Ring-shaped PET (RPET) fiber in concrete | Yes | [172] | ||
- | Neat asphalt concrete mixture | Yes | [173] | |
- | Fiber Reinforced Concrete (FRC) | - | [174] | |
Plastic | Bottles | Light weight aggregate concrete | Yes | [175] |
Doors | Waste plastic fiber reinforced concrete | - | [176] | |
Plastic bags | Self-compacting concrete (SCC) | - | [177] | |
Waste plastic fibers | Beverage bottles | - | [17] | |
Plastic | - | Concrete | Yes | [178] |
- | Fiber Reinforced Concrete (FRC) | Yes | [179] | |
- | Self-compacting concrete (SCC) | - | [180] | |
- | Concrete | Yes | [181] | |
Waste plastic | - | Yes | [182] | |
Glass fiber reinforced plastic (GRRPF) waste | - | Yes | [183] | |
Polypropylene (PP) carpets | Textile | Fiber Reinforced Concrete (FRC) | Yes | [44] |
Textile/ agriculture | Concrete | Yes | [184] | |
Agriculture Textile | Concrete | Yes | [185] | |
Waste carpet | Fiber Reinforced Concrete (FRC) | - | [45] | |
Polythene | Domestic waste plastic | Fiber Reinforced Self Compacting Concrete (FRSCC) | Yes | [186] |
Fiber Reinforced Concrete (FRC) | - | [187] | ||
Steel | Tires | Reactive powder concrete (RPC) | - | [188] |
Reinforced concrete (RC) | Yes | [108] | ||
Two-Stage Concrete | Yes | [189] | ||
Reinforced concrete (RC) | - | [190] | ||
Fiber Reinforced Concrete (FRC) | Yes | [191] | ||
Sustainable hybrid fiber reinforced concrete (SHFRC) | Yes | [192] | ||
Self-compacting concrete (SCC) | - | [153] | ||
Turnery | Concrete for massive structures | Yes | [137] | |
Tires, demolition | Fiber Reinforced Concrete (FRC) | Yes | [193] | |
Machined steel parts waste | - | - | [71] | |
Bio-scraps not specified | Agriculture | Fiber Reinforced Concrete (FRC) | Yes | [11] |
Carpet | Carpet | Lightweight cementitious composites | Yes | [194] |
Cellulose | Algae waste | Fiber Reinforced Concrete (FRC) | Yes | [195] |
Coconut coir | Food/steel plant | Concrete | Yes | [196] |
Coconut coir | Food | Fiber Reinforced Concrete (FRC) | Yes | [197] |
Hair | Human | Fiber Reinforced Concrete (FRC) | Yes | [198] |
Hair | Human | Concrete | Yes | [199] |
Textile | Textile | Foamed concrete | Yes | [200] |
Glass | - | Epoxy polymer concrete with fly ash | - | [201] |
Waste glass fiber reinforced polymers (GFRPs) | Waste glass fiber reinforced polymers (GFRPs) | Concrete | - | [202] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, Y.; Chen, P.; Li, L.; Gan, G.; Pan, G. A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites. Materials 2021, 14, 3643. https://doi.org/10.3390/ma14133643
Ming Y, Chen P, Li L, Gan G, Pan G. A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites. Materials. 2021; 14(13):3643. https://doi.org/10.3390/ma14133643
Chicago/Turabian StyleMing, Yang, Ping Chen, Ling Li, Guoxing Gan, and Gelin Pan. 2021. "A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites" Materials 14, no. 13: 3643. https://doi.org/10.3390/ma14133643
APA StyleMing, Y., Chen, P., Li, L., Gan, G., & Pan, G. (2021). A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites. Materials, 14(13), 3643. https://doi.org/10.3390/ma14133643