Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition of Examined Renders and Base Materials
2.2. Analysis of Base Materials
2.3. Testing of Hardened Rendering Mortars
2.3.1. Assessment of Macrostructural Parameters
2.3.2. Determination of Mechanical Parameters
2.3.3. Water and Water Vapor Transport Properties
2.3.4. Thermal Properties
2.3.5. Salt Crystallization Resistance
2.3.6. Measurement of Sorption and Desorption Isotherms
3. Results and Discussion
4. Conclusions
- (i)
- The main elements identified in the alternative aggregate (zeolite) were Si and Al, which corresponded well with the recorded crystalline phases, i.e., clinoptilolite and silicon oxide. The agglomerates of zeolite exhibited different shapes, and sizes between 2 and 10 μm, and the size of particles had no effect on their chemical composition. According to XRF and EDS data, in addition to Si, Al, and O, elements such as K, Ca, Fe and Mg were observed. The chemical composition, microstructure and particle size of zeolite meet the prerequisites for its use as a silica sand replacement well.
- (ii)
- The use of zeolite makes it possible to develop mortars whose bulk density and porosity conform to the requirements of WTA directive 2-9-4/D for repair rendering mortars.
- (iii)
- In terms of the mechanical performance, lime and natural hydraulic lime mortars with zeolite are considered to be suitable for repair applications, especially in heritage buildings or structures, where similar type of binder was originally used. On the other hand, lightweight cement-lime mortar was found to be too rigid and cannot be recommended for repair applications except for cases in which cement-lime renders are being renewed.
- (iv)
- The replacement of quartz sand with zeolite greatly accelerated the transmission of water vapor through the investigated mortars. The criterion set by WTA directive 2-9-4/D with respect to the water vapor permeability of repair mortars was easily met by lime and natural hydraulic lime mortars. Conversely, the water vapor resistance factor of cement-lime mortars was higher, thus limiting their use in damp masonry.
- (v)
- Water transport was enhanced by the use of zeolite as an aggregate, and similarly to the case water vapor transmission, lime and natural hydraulic lime zeolite mortars met the criterion imposed by the EN 998-1 for repair mortars.
- (vi)
- Due to the lower density of zeolite compared to quartz sand and the higher porosity of lightweight zeolite renders, both the thermal conductivity and volumetric heat capacity were significantly decreased. These mortars, when applied in the form of renders, can thus contribute to the mitigation of heat transport through the masonry under renovation.
- (vii)
- The tested rendering mortars exhibited high resistance to the crystallization of NaCl and Na2SO4 solutions, as well as the ability to accommodate salts in their highly porous structure.
- (viii)
- The use of zeolite as an aggregate greatly intensified the water vapor adsorption capacity of the tested renders, independently of the binder type.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, V.; Regev, L.; Weiner, S.; Boaretto, E. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. J. Archaeol. Sci. 2008, 35, 905–911. [Google Scholar] [CrossRef]
- Veiga, M.R.; Silva, A.S.; Tavares, M.; Santos, A.R.; Lampreia, N. Characterization of renders and plasters from a 16th century portuguese military structure: Chronology and durability. Restor. Build. Monum. 2013, 19, 223–238. [Google Scholar] [CrossRef]
- Veiga, M.R.; Fragata, A.; Tavares, M.; Magalhães, A.C.; Ferreira, N. Inglesinhos convent: Compatible renders and other measures to mitigate water capillary rising problems. J. Build. Apprais 2009, 5, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Maravelaki-Kalaitzaki, P.; Bakolas, A.; Moropoulou, A. Physico-chemical study of Cretan ancient mortars. Cem. Concr. Res. 2003, 33, 651–661. [Google Scholar] [CrossRef]
- Silva, A.S.; Borsoi, G.; Veiga, M.R.; Fragata, A.; Tavares, M.; Llera, F.; Barreiros, B.; Teixeira, T. Diagnosis, characterization and restoration of the internal renders of Santíssimo Sacramento church in Lisbon. In Historic Mortars: Characterisation, Assessment and Repair. RILEM Bookseries; Válek, J., Hughes, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 7, pp. 175–194. ISBN 978-94-007-4635-0. [Google Scholar] [CrossRef]
- Papayianni, I.; Stefanidou, M. Durability aspects of ancient mortars of the archeological site of Olynthos. J. Cult. Herit. 2007, 8, 193–196. [Google Scholar] [CrossRef]
- Hughes, J.J.; Van Balen, K.; Bicer-Simsir, B.; Binda, L.; Elsen, J.; van Hees, R.; von Konow, T.; Lindqvist, J.E.; Maurenbrecher, P.; Papayanni, I.; et al. RILEM TC 203-RHM: Repair mortars for historic masonry. Mater. Struct. 2012, 45, 1287–1294. [Google Scholar] [CrossRef]
- Loureiro, A.M.S.; Paz, S.P.A.; Veiga, M.R.; Angélica, R.S. Assessment of compatibility between historic mortars and lime-METAKAOLIN restoration mortars made from amazon industrial waste. Appl. Clay Sci. 2020, 198, 105843. [Google Scholar] [CrossRef]
- Callebaut, K.; Elsen, J.; van Balen, K.; Viaene, W. Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): Natural hydraulic lime or cement? Cem. Concr. Res. 2001, 31, 397–403. [Google Scholar] [CrossRef]
- Giosuè, C.; Pierpaoli, M.; Mobili, A.; Ruello, M.L.; Tittarelli, F. Multifunctional lightweight mortars for indoor applications to improve comfort and health of occupants: Thermal properties and photocatalytic efficiency. Front. Mater. 2020, 7, 255. [Google Scholar] [CrossRef]
- Amanatidis, G. European Policies on Climate and Energy Towards 2020, 2030 and 2050. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/631047/IPOL_BRI(2019)631047_EN.pdf (accessed on 22 March 2021).
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: http://data.europa.eu/eli/dir/2010/31/oj (accessed on 21 March 2021).
- Fleiter, T.; Steinbach, J.; Ragwitz, M.; Arens, M.; Aydemir, A.; Elsland, R.; Fleiter, T.; Frassine, C.; Herbst, A.; Hirze, S.; et al. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables): Executive Summary. Available online: https://ec.europa.eu/energy/sites/default/files/documents/mapping-hc-excecutivesummary.pdf (accessed on 22 March 2021).
- Barbero-Barrera, M.M.; González, F.J.N.; Ramos, L.M.; García Santos, A.; van Balen, K. Energy Renovation by Lime Renders. Historic Mortars and RILEM TC 203-RHM Final Workshop HMC2010. In Proceedings of the 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, Prague, Czech Republic, 22–24 September 2010; Válek, J., Groot, C., Hughes, J.J., Eds.; RILEM Publications, S.A.R.L.: Bagneux, France, 2010; pp. 891–898. [Google Scholar]
- Kolokotsa, D.; Maravelaki-Kalaitzaki, P.; Papantoniou, S.; Vangeloglou, E.; Saliari, M.; Karlessi, T.; Santamouris, M. Development and analysis of mineral based coatings for buildings and urban structures. Sol. Energy 2012, 86, 1648–1659. [Google Scholar] [CrossRef]
- van Hees, R.; Veiga, R.; Slížková, Z. Consolidation of renders and plasters. Mater. Struct. 2017, 50. [Google Scholar] [CrossRef] [Green Version]
- Sanierputzsysteme, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V.; WTA Merkblatt 2-9-04/D; Vertrieb; WTA Publications: Karlsruhe, Germany, 2005.
- Barnat-Hunek, D.; Siddique, R.; Klimek, B.; Franus, M. The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Constr. Build. Mater. 2017, 142, 162–174. [Google Scholar] [CrossRef]
- Pavlík, Z.M.; Pavlíková, M.L.; Balík, L.; Černý, R. In-situ analysis of hygric performance of piaristic monastery building. AIP Conf. Proc. 2015, 1648, 410006. [Google Scholar] [CrossRef]
- Groot, C.R.; van Hees, R.; T. Wijffels, T. Selection of plasters and renders for salt laden masonry substrates. Constr. Build. Mater. 2009, 23, 1743–1750. [Google Scholar] [CrossRef]
- Petkovic, J.; Huinink, H.P.; Pel, L.; Kopinga, K.; van Hees, R.P.J. Moisture and salt transport in three-layer plaster/substrate systems. Constr. Build. Mater. 2010, 24, 118–127. [Google Scholar] [CrossRef]
- Gonçalves, T.D.; Pel, L.; Delgado Rodrigues, J. Worsening of dampness and salt damage after restoration interventions: Use of water-repellent additives in plasters and renders. In Proceedings of the 1st Historical Mortars Conference (HMC08), Portugal, Lisbon, 24–26 September 2008. [Google Scholar]
- Fragata, A.; Veiga, M.R.; Velosa, A.L. Salt Crystallization in Substitution Renderd for Historical Constructions. Historic Mortars and RILEM TC 203-RHM Final Workshop HMC2010. In Proceedings of the 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, Prague, Czech Republic, 22–24 September 2010; Válek, J., Groot, C., Hughes, J.J., Eds.; RILEM Publications, S.A.R.L.: Bagneux, France, 2010; pp. 983–992. [Google Scholar]
- Lubelli, B.; Nijland, T.G.; van Hees, R.P.J. Self-healing of lime based mortars: Microscopy observations on case studies. Heron 2011, 56, 75–91. [Google Scholar]
- de Freitas, V.P.; Gonçalves, P.F. Specification and time required for the application of a lime-based render inside historic buildings. Conserv. Patrim. 2008, 8, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Veiga, R. Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review. Constr. Build. Mater. 2017, 157, 132–140. [Google Scholar] [CrossRef]
- Nogueira, R.; Pinto, A.P.F.; Gomes, A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018, 89, 192–204. [Google Scholar] [CrossRef]
- Gulbe, L.; Vitina, I.; Setina, J. The influence of cement on properties of lime mortars. Procedia Eng. 2017, 172, 325–332. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Faria, J.; Jalali, S. Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Constr. Build. Mater. 2012, 30, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Vyšvařil, M.; Pavlíková, M.; Záleská, M.; Pivák, A.; Žižlavský, T.; Rovnaníková, P.; Bayer, P.; Pavlík, Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020, 263, 120617. [Google Scholar] [CrossRef]
- Arizzi, A.; Viles, H.; Cultrone, G. Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr. Build. Mater. 2012, 28, 807–818. [Google Scholar] [CrossRef]
- Andrejkovičová, S.; Velosa, A.L.; Ferraz, E.; Rocha, F. Influence of clay minerals addition on mechanical properties of air lime–metakaolin mortars. Constr. Build. Mater. 2014, 65, 132–139. [Google Scholar] [CrossRef]
- Santos, A.R.; Veiga, M.R.; Matias, L.; Silva, A.S.; De Brito, J. Durability and compatibility of lime-based mortars: The effect of aggregates. Infrastructures 2018, 34, 34. [Google Scholar] [CrossRef]
- Pavlík, Z.; Pokorný, J.; Pavlíková, M.; Zemanová, L.; Záleská, M.; Vyšvařil, M.; Žižlavský, T. Mortars with crushed lava granulate for repair of damp historical buildings. Materials 2019, 12, 3557. [Google Scholar] [CrossRef]
- Beycan Tatanoğlu, Ö.; Kockal, N.U. Utilization of pumice of Burdur region and zeolite of Bigadiç-Balıkesir region as fine aggregate in construction materials. Bull. Min. Res. Exp. 2020, 161, 191–200. [Google Scholar] [CrossRef]
- Klimek, B.; Szulej, J.; Ogrodnik, P. The effect of replacing sand with aggregate from sanitary ceramic waste on the durability of stucco mortars. Clean Technol. Envir. 2020, 22, 1929–1941. [Google Scholar] [CrossRef]
- Abadou, Y.; Kettab, R.; Ghrieb, A. Durability of a repaired dune sand mortar modified by ceramic waste. Eng. Struct. Technol. 2018, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Styczeń, J.; Barnat-Hunek, D.; Panek, R.; Franus, W. The microstructural and physical properties of renovation renders with clinoptilolite, Na-P1 and Na-X zeolites. Constr. Build. Mater. 2020, 261, 120016. [Google Scholar] [CrossRef]
- Sun, X.; Liu, H.; Tian, Z.; Ma, Y.; Wang, Z.; Fan, H. Feasibility and economic evaluation of grouting materials containing binary and ternary industrial waste. Constr. Build. Mater. 2021, 274, 122021. [Google Scholar] [CrossRef]
- Ahmadi, B.; Shekarchi, M. Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 2010, 32, 134–141. [Google Scholar] [CrossRef]
- Aškrabić, M.; Vyšvařil, M.; Zakić, D.; Savić, A.; Stevanović, B. Effects of natural zeolite addition on the properties of lime putty-based rendering mortars. Constr. Build. Mater. 2021, 270, 121363. [Google Scholar] [CrossRef]
- Pavlík, V.; Užáková, M. Effect of curing conditions on the properties of lime, lime–metakaolin and lime–zeolite mortars. Constr. Build. Mater. 2016, 102, 14–25. [Google Scholar] [CrossRef]
- Lanas, J.; Alvarey-Galindo, J. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003, 33, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
- Horn, K. Lime Rendering-Sustainable Heritage Report No. 1; Novia Publications and Production: Vaasa, Finland, 2011. [Google Scholar]
- Tenconi, M.; Karatasios, I.; Bala’awi, F.; Kilikoglou, V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018, 33, 100–116. [Google Scholar] [CrossRef]
- Cazalla, O.; Rodriguez-Navarro, C.; Sebastian, E.; Cultrone, G. Aging of lime putty: Effects on traditional lime mortar carbonation. J. Am. Ceram. Soc. 2000, 83, 1070–1076. [Google Scholar] [CrossRef]
- Methods of Test for Mortar for Masonry. Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); EN 1015-3; European Committee for Standardization (CEN): Brussels, Belgium, 1999. [Google Scholar]
- Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar; EN 1015-10; European Committee for Standardization (CEN): Brussels, Belgium, 1999.
- Záleská, M.; Pavlík, Z.; Čítek, D.; Jankovský, O.; Pavlíková, M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate—Properties and thermal stability. Constr. Build. Mater. 2019, 225, 709–722. [Google Scholar] [CrossRef]
- Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; EN 1015-11; European Committee for Standardization (CEN): Brussels, Belgium, 1999.
- Methods of Test for Mortar for Masonry-Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar; EN 1015-18; European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- Feng, C.; Guimarães, A.S.; Ramos, N.; Sun, L.; Gawin, D.; Konca, P.; Hall, C.; Zhao, J.; Hirsch, H.; Grunewald, J.; et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020, 185, 107242. [Google Scholar] [CrossRef]
- Lauermannová, A.-M.; Lojka, M.; Jankovský, O.; Faltysová, I.; Pavlíková, M.; Pivák, A.; Záleská, M.; Pavlík, Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021, 11, 957–969. [Google Scholar] [CrossRef]
- Kumaran, M. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envelope Build. Sci. 1999, 22, 349–355. [Google Scholar] [CrossRef]
- Hygrothermal Performance of Building Materials and Product Determination of Water Vapour Transmission Properties; EN ISO 12572; International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Pavlík, Z.; Trník, A.; Keppert, M.; Pavlíková, M.; Žumár, J.; Černý, R. Experimental investigation of the Properties of lime-based plaster-containing pcm for enhancing the heat-storage capacity of building envelopes. Int. J. Thermophys. 2014, 35, 767–782. [Google Scholar] [CrossRef]
- Natural Stone Test Methods—Determination of Resistance to Salt Crystallization; EN 12370; European Committee for Standardization (CEN): Brussels, Belgium, 2020.
- Lubelli, B.; van Hees, R.P.J.; Nijland, T.G. Salt crystallization damage: How realistic are existing ageing tests? In Proceedings of the 1st International Conference on Ageing of Materials & Structures Delft University of Technology, Delft, The Netherlands, 26–28 May 2014; van Breugel, K., Koenders, A.E.B., Eds.; Delft University of Technology: Delft, The Netherlands, 2014. [Google Scholar]
- Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J. Effect of mixed in crystallization modifiers on the resistance of lime mortar against NaCl and Na2SO4 crystallization. Constr. Build. Mater. 2019, 194, 62–70. [Google Scholar] [CrossRef]
- Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar; EN 998-1; European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- Veiga, M.; Aguiar, J.; Silva, A.S.; Carvalho, S.F. Methodologies for characterisation and repair of mortars of ancient buildings. In Historical Constructions; Lourenço, P., Roca, P., Eds.; University of Minho: Guimarães: Portugal, 2001. [Google Scholar]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015, 94, 346–360. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005, 27, 289–294. [Google Scholar] [CrossRef]
- Faria-Rodrigues, P.; Henriques, F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004, 10, 609–622. [Google Scholar] [CrossRef]
- Ventolà, L.; Vendrell, M.; Giraldez, P.; Merino, L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 2011, 25, 3313–3318. [Google Scholar] [CrossRef]
- Papayianni, I. The longevity of old mortars. Appl. Phys. A 2006, 83, 685–688. [Google Scholar] [CrossRef]
- Papayianni, I. Design and Manufacture of Repair Mortars for Interventions on Monuments and Historical Buildings; Workshop Repair Mortars for Historic Masonry; Groot, C., Ed.; RILEM Publications SARL: Paris, France, 2005; pp. 292–304. [Google Scholar]
- Silva, B.A.; Ferreira Pinto, A.P.; Augusto, G. Infleunce of natural hzdraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014, 72, 208–218. [Google Scholar] [CrossRef]
- Parcesepe, E.; De Masi, R.F.; Lima, C.; Mauro, G.M.; Pecce, M.R.; Maddaloni, G. Assessmet of mechanical and thermal properties of hem-lime mortar. Materials 2021, 14, 882. [Google Scholar] [CrossRef]
- Roels, S.; Carmeliet, J.; Hens, H.; Adan, O.; Brocken, H.; Cerny, R.; Pavlik, Z.; Hall, C.; Kumaran, K.; Pel, L.; et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004, 27, 307–325. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Záleská, M.; Pokorný, J.; Lojka, M.; Jankovský, O.; Pavlík, Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials 2019, 12, 996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hens, H.S.L.C. The vapor diffusion resistance and air permeance of masonry and roofing systems. Build. Environ. 2006, 41, 745–755. [Google Scholar] [CrossRef]
- Darr, J.P.; Davis, S.Q.; Kohno, Y.; McKenna, K.; Morales, P. Morphological effects on the hygroscopic properties of sodium chloride–sodium sulfate aerosols. J. Aerosol Sci. 2014, 77, 158–167. [Google Scholar] [CrossRef]
- Martin, S.T. Phase transitions of aqueous atmospheric particles. Chem. Rev. 2000, 100, 3403–3453. [Google Scholar] [CrossRef] [PubMed]
- Biskos, G.; Malinowski, A.; Russll, L.M.; Busseck, P.R.; Martin, S.T. Nanosize effect on the deliquescence and the efflorescence of sodium chloride particels. Aerosol Sci. Technol. 2006, 40, 97–106. [Google Scholar] [CrossRef] [Green Version]
Mortar | Lime Hydrate | NHL | Portland Cement | Sand 0.0/0.5 | Sand 0.5/1.0 | Sand 1.0–2.0 | Zeolite 0.063–0.5 | Zeolite 0.5–1.0 | Zeolite 1.0–2.0 | Water |
---|---|---|---|---|---|---|---|---|---|---|
LM-R | 326.1 | - | - | 434.5 | 434.5 | 434.5 | - | - | - | 391.3 |
LM-Z | 332.3 | - | - | - | - | - | 272.5 | 272.5 | 272.5 | 508.6 |
NHLM-R | - | 410.0 | - | 464.9 | 464.9 | 464.9 | - | - | - | 307.7 |
NHLM-Z | - | 403.2 | - | - | - | - | 333.5 | 333.5 | 333.5 | 552.7 |
CLM-R | 241.9 | - | 241.9 | 451.6 | 451.6 | 451.6 | - | - | - | 348.3 |
CLM-Z | 242.3 | - | 242.3 | - | - | - | 279.5 | 279.5 | 279.5 | 509.0 |
Material | Si | Al | Fe | Ca | Mg | K | Ti | S |
---|---|---|---|---|---|---|---|---|
Lime hydrate | 0.1 | 0.9 | 0.1 | 69.5 | 0.5 | - | - | - |
NHL | 3.1 | 2.0 | 1.7 | 60.3 | 1.2 | 0.4 | 0.1 | - |
Portland cement | 7.7 | 2.4 | 2.4 | 46.7 | 0.9 | 0.7 | 0.2 | 2.8 |
Quartz sand | 45.0 | 1.7 | - | - | 0.2 | - | 0.1 | - |
Zeolite | 34.7 | 8.9 | 0.8 | 1.6 | 1.1 | 2.6 | 0.1 | - |
Element (wt.%) | Fractions of Zeolite (mm) | ||
---|---|---|---|
1–2 | 0.5–1 | 0.063–0.5 | |
O | 50.6 | 50.6 | 52.7 |
Si | 36.5 | 36.5 | 34.9 |
Al | 6.4 | 6.4 | 6.3 |
K | 3.2 | 3.3 | 3.0 |
Ca | 2.5 | 2.4 | 2.1 |
Fe | 0.7 | 0.8 | 1.1 |
Material | ρb (kg·m−3) | ρb (kg·m−3) | ρs (kg·m−3) | ρs (kg·m−3) | Ψ (%) | Ψ (%) |
---|---|---|---|---|---|---|
28 Days | 90 Days | 28 Days | 90 Days | 28 Days | 90 Days | |
LM-R | 1756 ± 25 | 1783 ± 25 | 2598 ± 31 | 2612 ± 31 | 32.4 ± 0.6 | 31.7 ± 0.6 |
LM-Z | 1141 ± 16 | 1156 ± 16 | 2274 ± 27 | 2237 ± 27 | 49.8 ± 1.0 | 48.3 ± 1.0 |
NHLM-R | 1761 ± 29 | 1813 ± 25 | 2597 ± 31 | 2625 ± 32 | 32.2 ± 0.6 | 30.9 ± 0.6 |
NHLM-Z | 1158 ± 16 | 1184 ± 17 | 2126 ± 26 | 2119 ± 25 | 45.5 ± 0.9 | 44.1 ± 0.9 |
CLM-R | 1814 ± 25 | 1845 ± 26 | 2525 ± 30 | 2535 ± 30 | 28.1 ± 0.6 | 27.2 ± 0.5 |
CLM-Z | 1226 ± 17 | 1234 ± 17 | 2116 ± 25 | 2096 ± 25 | 42.0 ± 0.8 | 41.1 ± 0.8 |
Material | ff (MPa) | ff (MPa) | fc (MPa) | fc (MPa) | Ed (GPa) | Ed (GPa) |
---|---|---|---|---|---|---|
28 Days | 90 Days | 28 Days | 90 Days | 28 Days | 90 Days | |
LM-R | 1.1 | 1.5 | 1.3 | 1.9 | 4.4 | 4.8 |
LM-Z | 0.7 | 0.8 | 1.1 | 1.7 | 3.4 | 3.6 |
NHLM-R | 1.1 | 1.8 | 4.3 | 5.5 | 4.1 | 5.4 |
NHLM-Z | 0.9 | 1.1 | 2.1 | 3.7 | 3.6 | 4.9 |
CLM-R | 2.7 | 2.8 | 8.1 | 9.1 | 10.9 | 11.2 |
CLM-Z | 1.7 | 1.9 | 5.1 | 5.6 | 4.2 | 4.7 |
Material | Dry-cup | Wet-cup | ||
---|---|---|---|---|
µ (-) | ||||
28 Days | 90 Days | 28 Days | 90 Days | |
LM-R | 11.1 ± 0.3 | 10.9 ± 0.3 | 10.9 ± 0.3 | 10.6 ± 0.3 |
LM-Z | 9.7 ± 0.3 | 9.4 ± 0.3 | 9.3 ± 0.3 | 8.6 ± 0.2 |
NHLM-R | 12.4 ± 0.3 | 11.3 ± 0.3 | 10.7 ± 0.3 | 9.5 ± 0.3 |
NHLM-Z | 11.4 ± 0.3 | 11.1 ± 0.3 | 9.6 ± 0.3 | 9.8 ± 0.3 |
CLM-R | 23.3 ± 0.7 | 18.9 ± 0.5 | 21.0 ± 0.6 | 19.8 ± 0.6 |
CLM-Z | 19.5 ± 0.5 | 18.2 ± 0.5 | 19.6 ± 0.5 | 19.3 ± 0.5 |
Material | Aw (kg·m−2·s−1/2) | κapp (m2·s−1) | ||
---|---|---|---|---|
28 Days | 90 Days | 28 Days | 90 Days | |
LM-R | 0.28 | 0.25 | 7.54 × 10−7 | 6.12 × 10−7 |
LM-Z | 0.36 | 0.34 | 2.08 × 10−6 | 1.96 × 10−6 |
NHLM-R | 0.28 | 0.23 | 8.34 × 10−7 | 4.98 × 10−7 |
NHLM-Z | 0.33 | 0.32 | 2.30 × 10−6 | 2.17 × 10−6 |
CLM-R | 0.13 | 0.12 | 4.02 × 10−7 | 3.78 × 10−7 |
CLM-Z | 0.24 | 0.22 | 5.61 × 10−7 | 4.76 × 10−7 |
Material | Mass Change | Difference in Porosity | ||
---|---|---|---|---|
NaCl | Na2SO4 | NaCl | Na2SO4 | |
LM-R | −0.34 | 0.50 | −1.1 | −1.4 |
LM-Z | −0.18 | 1.12 | 2.3 | 1.6 |
NHLM-R | 1.13 | 1.52 | −2.2 | −1.7 |
NHLM-Z | 1.70 | 1.90 | −1.1 | −0.8 |
CLM-R | 0.70 | 1.03 | 1.1 | 1.9 |
CLM-Z | 1.04 | 2.13 | 0.5 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlíková, M.; Kapicová, A.; Pivák, A.; Záleská, M.; Lojka, M.; Jankovský, O.; Pavlík, Z. Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance. Materials 2021, 14, 3760. https://doi.org/10.3390/ma14133760
Pavlíková M, Kapicová A, Pivák A, Záleská M, Lojka M, Jankovský O, Pavlík Z. Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance. Materials. 2021; 14(13):3760. https://doi.org/10.3390/ma14133760
Chicago/Turabian StylePavlíková, Milena, Adéla Kapicová, Adam Pivák, Martina Záleská, Michal Lojka, Ondřej Jankovský, and Zbyšek Pavlík. 2021. "Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance" Materials 14, no. 13: 3760. https://doi.org/10.3390/ma14133760
APA StylePavlíková, M., Kapicová, A., Pivák, A., Záleská, M., Lojka, M., Jankovský, O., & Pavlík, Z. (2021). Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance. Materials, 14(13), 3760. https://doi.org/10.3390/ma14133760