Three-Dimensional Metal-Insulator-Metal Decoupling Capacitors with Optimized ZrO2 ALD Properties for Improved Electrical and Reliability Parameters
Abstract
:1. Introduction
2. Materials and Methods
TEMAZr Pulse Time (tpulse) | TEMAZr Cycles/Super-Cycle | Deposition Temperature (TD) | ZrAlxOy Physical Thickness 1 |
---|---|---|---|
3 s | 61 | 283 °C/556 K | - |
6 s | 59 | 283 °C/556 K | 24.6 nm |
9 s | 59 | 283 °C/556 K | 28.7 nm |
12 s | 55 | 283 °C/556 K | 29.1 nm |
12 s | 48 | 303 °C/576 K | 27.4 nm |
15 s | 48 | 303 °C/576 K | 27.0 nm |
3. Results and Discussion
3.1. Capacitance Behavior, Temperature Dependence and Voltage Linearity
3.2. Leakage Currents, Breakdown and Reliability Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, M.; Austin, D.; Conley, J., Jr.; Fan, J.; de Groot, C.H.; Jiang, L.; Fan, Y.; Ali, R.; Ghosh, G.; Orlowski, M.; et al. Review—Beyond the Highs and Lows: A Perspective on the Future of Dielectrics Research for Nanoelectronic Devices. ECS J. Solid State Sci. Technol. 2019, 8, 124–131. [Google Scholar] [CrossRef]
- Seidel, K.; Weinreich, W.; Polakowski, P.; Triyoso, D.H.; Nolan, M.G.; Yiang, K.Y.; Chu, S. Reliability comparison of pure ZrO2 and Al−doped ZrO2 MIM capacitors. In Proceedings of the 2013 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 13–17 October 2013; pp. 185–186. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, B.-E.; Thompson, D.; Choe, M.; Lee, Z.; Oh, I.-K.; Kim, W.-H.; Kim, H. Improved interface quality of atomic-layer-deposited ZrO2 metal-insulator-metal capacitors with Ru bottom electrodes. Thin Solid Films 2020, 701, 137950. [Google Scholar] [CrossRef]
- Ferrand, J.; Beugin, V.; Crisci, A.; Coindeau, S.; Jeannot, S.; Gros-Jean, M.; Blanquet, E. Tetragonal Zirconia Stabilization by Metal Addition for Metal-Insulator-Metal Capacitor Applications. ECS Trans. 2013, 58, 223–233. [Google Scholar] [CrossRef]
- Amon, J.; Kieslich, A.; Heineck, L.; Schuster, T.; Faul, J.; Luetzen, J.; Fan, C.; Huang, C.C.; Fischer, B.; Enders, G.; et al. A highly manufacturable deep trench based DRAM cell layout with a planar array device in a 70nm technology. In Proceedings of the IEDM Technical Digest. IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 73–76. [Google Scholar] [CrossRef]
- Weinreich, W.; Wilde, L.; Müller, J.; Sundqvist, J.; Erben, E.; Heitmanm, J.; Lemberger, M.; Bauer, A.J. Structural Properties of as deposited and annealed ZrO2 influenced by atomic layer deposition, substrate and doping. J. Vac. Sci. Technol. A 2013, 31, 011119. [Google Scholar] [CrossRef]
- Paskaleva, A.; Weinreich, W.; Bauer, A.J.; Lemberger, M.; Frey, L. Improved electrical behavior of ZrO2-based MIM structures by optimizing the O3 oxidation pulse time. Mater. Sci. Semicond. Process. 2015, 29, 124–131. [Google Scholar] [CrossRef]
- Weinreich, W.; Tauchnitz, T.; Polakowski, P.; Drescher, M.; Riedel, S.; Sundqvist, J.; Seidel, K. TEMAZ/O3 atomic layer deposition process with doubled growth rate and optimized interface properties in metal–insulator–metal capacitors. J. Vac. Sci. Technol. A 2013, 31, 01A123. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243. [Google Scholar] [CrossRef]
- Schröder, U.; Weinreich, W.; Erben, E.; Müller, J.; Wilde, L.; Heitmann, J.; Agaiby, R.; Zhou, D.; Jegert, G.; Kersch, A. Detailed Correlation of Electrical and Breakdown Characteristics to the Structural Properties of ALD Grown HfO2- and ZrO2-based Capacitor Dielectrics. ECS Trans. 2009, 25, 357–366. [Google Scholar] [CrossRef]
- Mart, C.; Zybell, S.; Riedel, S.; Czernohorsky, M.; Seidel, K.; Weinreich, W. Enhanced reliability and capacitance stability of ZrO2 –based decoupling capacitors by interface doping with Al2O3. Microelectron. Eng. 2017, 178, 254–257. [Google Scholar] [CrossRef]
- Engelhardt, M. Single-crystal silicon trench etching for fabrication of highly integrated circuits. In Advanced Techniques for Integrated Circuit Processing; SPIE: Bellingham, WA, USA, 1991. [Google Scholar] [CrossRef]
- Adler, E.; DeBrosse, J.K.; Geissler, S.F.; Holmes, S.J.; Jaffe, M.D.; Johnson, J.B.; Koburger, C.W.; Lasky, J.B.; Lloyd, B.; Miles, G.L.; et al. The evolution of IBM CMOS DRAM technology. IBM J. Res. Dev. 1995, 39, 167–188. [Google Scholar] [CrossRef]
- Hausmann, D.M.; Kim, E.; Becker, J.; Gordon, R.G. ALD of Hafnium and Zirconium Oxides using metal amide precursors. Chem. Mater. 2002, 14, 4350–4358. [Google Scholar] [CrossRef]
- Zhang, Q. The effects of Annealing on the Electrical Performance of MIM Capacitors with ZrO2 Dielectric. Integr. Ferroelectr. 2019, 199, 112–117. [Google Scholar] [CrossRef]
- Weinreich, W.; Seidel, K.; Rudolph, M.; Koch, J.; Paul, J.; Riedel, S.; Sundqvist, J.; Steidel, K.; Gutsch, M.; Beyer, V.; et al. Scaling and optimization of high-density integrated Si-capacitors. In Proceedings of the 2013 International Semiconductor Conference Dresden—Grenoble (ISCDG), Dresden, Germany, 26–27 September 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Kühnel, K.; Czernohorsky, M.; Mart, C.; Weinreich, W. High-density energy storage in Si-doped hafnium oxide thin films on area-enhanced substrates. J. Vac. Sci. Technol. B 2019, 37, 021401. [Google Scholar] [CrossRef]
- AEC Component Technical Committee. Failure Mechanism Based Stress Test Qualification For Integrated Circuits. AEC-Q100, Rev-H, Automotive Electronics Council, USA. 2014. Available online: http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf (accessed on 4 October 2022).
- Electronic Components, Assemblies & Materials Association Ceramic Dielectric Capacitors Classes I, II, III and IV—Part I: Characteristics and Requirements. EIA-198-1, Rev-F, Electronic Industries Alliance, Arlington, USA. 2002. Available online: https://www.antpedia.com/standard/pdf/129263/1804/1524013638-4568.pdf (accessed on 4 October 2022).
- Weinreich, W.; Reiche, R.; Lemberger, M.; Jegert, G.; Müller, J.; Wilde, L.; Teichert, S.; Heitmann, J.; Erben, E.; Oberbeck, L.; et al. Impact of interface variations on J-V and C-V polarity asymmetry of MIM capacitors with amorphous and crystalline Zr(1- x)AlxO2 films. Microelectron. Eng. 2009, 86, 1826–1829. [Google Scholar] [CrossRef]
- Yeargan, J.R.; Taylor, H.L. The Poole-Frenkel Effect with Compensation Present. J. Appl. Phys. 1968, 39, 5600. [Google Scholar] [CrossRef]
- Ongaro, R.; Pillonnet, A. Poole-Frenkel (PF) effect high field saturation. Rev. Phys. Appliquée Société Française Phys./EDP 1989, 24, 1085–1095. [Google Scholar] [CrossRef]
- Brennan, C.J. Characterization and modelling of thin-film ferroelectric capacitors using C-V analysis. Integr. Ferroelectr. Int. J. 1992, 2, 73–82. [Google Scholar] [CrossRef]
- Strand, J.; La Torraca, P.; Padovani, A.; Larcher, L.; Shluger, A.L. Dielectric breakdown in HfO2 dielectrics: Using multiscale modeling to identify the critical physical processes involved in oxide degradation. J. Appl. Phys. 2002, 131, 234501. [Google Scholar] [CrossRef]
- Zhou, D.; Schroeder, U.; Xu, J.; Heitmann, J.; Jegert, G.; Weinreich, W.; Kerber, M.; Knebel, S.; Erben, E.; Mikolajick, T. Reliability of Al2O3-doped ZrO2 high-k dielectrics in three-dimensional stacked metal-insulator-metal capacitors. J. Appl. Phys. 2010, 108, 124104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falidas, K.E.; Kühnel, K.; Rudolph, M.; Everding, M.B.; Czernohorsky, M.; Heitmann, J. Three-Dimensional Metal-Insulator-Metal Decoupling Capacitors with Optimized ZrO2 ALD Properties for Improved Electrical and Reliability Parameters. Materials 2022, 15, 8325. https://doi.org/10.3390/ma15238325
Falidas KE, Kühnel K, Rudolph M, Everding MB, Czernohorsky M, Heitmann J. Three-Dimensional Metal-Insulator-Metal Decoupling Capacitors with Optimized ZrO2 ALD Properties for Improved Electrical and Reliability Parameters. Materials. 2022; 15(23):8325. https://doi.org/10.3390/ma15238325
Chicago/Turabian StyleFalidas, Konstantinos Efstathios, Kati Kühnel, Matthias Rudolph, Maximilian B. Everding, Malte Czernohorsky, and Johannes Heitmann. 2022. "Three-Dimensional Metal-Insulator-Metal Decoupling Capacitors with Optimized ZrO2 ALD Properties for Improved Electrical and Reliability Parameters" Materials 15, no. 23: 8325. https://doi.org/10.3390/ma15238325
APA StyleFalidas, K. E., Kühnel, K., Rudolph, M., Everding, M. B., Czernohorsky, M., & Heitmann, J. (2022). Three-Dimensional Metal-Insulator-Metal Decoupling Capacitors with Optimized ZrO2 ALD Properties for Improved Electrical and Reliability Parameters. Materials, 15(23), 8325. https://doi.org/10.3390/ma15238325