Comparison of CoW/SiO2 and CoB/SiO2 Interconnects from the Perspective of Electrical and Reliability Characteristics
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonella, R. Key reliability issues for copper integration in damascene architecture. Microelectron. Eng. 2001, 55, 245. [Google Scholar]
- Raghavan, G.; Chiang, C.; Anders, P.B.; Tzeng, S.-M.; Villasol, R.; Bai, G.; Bohr, M.; Fraser, D.B. Diffusion of copper through dielectric films under bias temperature stress. Thin Solid Films 1995, 262, 168. [Google Scholar] [CrossRef]
- Achanta, R.S.; Gill, W.N.; Plawsky, J.L. Predicting the lifetime of copper/barrier/dielectric systems: Insights for designing better barriers for reducing copper ion drift/diffusion into the dielectric. J. Appl. Phys. 2009, 106, 74–906. [Google Scholar]
- Grill, A.; Gates, S.; Ryan, T.; Nguyen, S.; Priyadarshini, D. Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Appl. Phys. Rev. 2014, 1, 011306. [Google Scholar] [CrossRef]
- Gall, D. Electron mean free path in elemental metals electron mean free path in elemental metals. J. Appl. Phys. 2016, 119, 85101. [Google Scholar]
- Feldman, B.; Park, S.; Haverty, M.; Shankar, S.; Dunham, S. Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering. Phys. Status Solidi 2010, 247, 1791. [Google Scholar]
- Steinhogl, W.; Schindler, G.; Steinlesberger, G.; Traving, M.; Engelhardt, M. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 2005, 97, 0237061. [Google Scholar] [CrossRef]
- Wislicenus, M.; Liske, R.; Gerlich, L.; Vasilev, B.; Preusse, A. Cobalt advanced barrier metallization: A resistivity composition analysis. Microelectron. Eng. 2015, 137, 11. [Google Scholar]
- Tsyntsaru, N.; Cesiulis, H.; Pellicer, E.; Celis, J.-P.; Sort, J. Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies. Electrochim. Acta 2013, 104, 94. [Google Scholar] [CrossRef]
- Rafaja, D.; Schimpf, C.; Klemm, V.; Schreiber, G.; Bakonyi, I.; Péter, L. Formation of microstructural defects in electrodeposited Co/Cu multilayers. Acta Mater. 2009, 57, 3211. [Google Scholar]
- Tsyntsaru, N.; Cesiulis, H.; Budreika, A.; Ye, X.; Juskenas, R.; Celis, J.-P. The effect of electrodeposition conditions and post-annealing on nanostructure of Co–W coatings. Surf. Coat. Technol. 2012, 206, 4262. [Google Scholar] [CrossRef]
- Hosseini, M.; Ando, D.; Sutou, Y.; Koike, J. Co and CoTix for contact plug and barrier layer in integrated circuits. Microelectron. Eng. 2018, 189, 78. [Google Scholar] [CrossRef]
- Yoo, E.; Moon, J.H.; Jeon, Y.S.; Kim, Y.; Ahn, J.-P.; Kim, Y.K. Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires. Mater. Char. 2020, 166, 110451. [Google Scholar] [CrossRef]
- Suzuki, Y.; Momose, T.; Shimogaki, Y. Precursor-based designs of nano-structures and their processing for Co(W) alloy films as a single layered/liner layer in future Cu-interconnect. J. Mater. Chem. 2015, C3, 2500. [Google Scholar]
- Chang, S.-Y.; Lu, C.-L. Thermal stability and interface diffusion behaviors of electrolessly deposited CoWP and Cu films. J. Electrochem. Soc. 2008, 155, D234. [Google Scholar]
- Faria, M.I.S.T.; Leonardi, T.; Coelho, G.C.; Nunes, C.A.; Avillez, R. Microstructural characterization of as-cast Co–B alloys. Mater. Charact. 2007, 58, 358. [Google Scholar]
- Tsai, T.K.; Shih, I.T.; Cheng, Y.L.; Chen, G.S.; Fang, J.S. Enhancement of breakdown strength and electromigration reliability for cobalt lines lightly doped with boron. Mater. Chem. Phys. 2022, 285, 126136. [Google Scholar]
- He, M.; Lu, T.-M. Metal-Dielectric Interfaces in Gigascale Electronics: Thermal and Electrical Stability; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 157. [Google Scholar]
- Perng, D.-C.; Yeh, J.-B.; Hsu, K.-C.; Tsai, S.-W. Self-forming AlOx layer as Cu diffusion barrier on porous low-k film. Thin Solid Films 2010, 518, 1648. [Google Scholar]
- Hosseini, M.; Koike, J. Amorphous CoTix as a liner/diffusion barrier material for advanced copper metallization. J. Alloys Compd. 2017, 721, 134. [Google Scholar] [CrossRef]
- Zhao, L.; Volders, H.; Baklanov, M.; Tokei, Z.; Pantouvaki, M.; Wilson, C.; Besien, E.V.; Beyer, G.; Claeys, C. Study of metal barrier deposition-induced damage to porous low-k materials. Microelectron. Eng. 2011, 88, 3030. [Google Scholar]
- Cheng, Y.; Peng, W.; Lee, C.Y.; Chen, G.; Lin, Y.; Fang, J.S. From electrical and reliability perspective for self-forming barrier CuSc metallization. ECS J. Solid State Sci. Technol. 2021, 10, 65014. [Google Scholar]
- Szwagierczak, D.; Synkiewicz, B.; Kulawik, J. Low dielectric constant composites based on B2O3 and SiO2 rich glasses, cordierite and mullite. Ceramics 2018, 44, 14495. [Google Scholar] [CrossRef]
- Osburn, C.M.; Raider, S.I. The effect of mobile sodium ions on field enhancement dielectric breakdown in SiO2 films on silicon. J. Electrochem. Soc. 1993, 120, 1369. [Google Scholar]
- Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Cheng, Y.L.; Huang, H.C.; Lee, C.Y.; Chen, G.S.; Fang, J.S. Comparison of Cu and Co Integration with Porous Low-k SiOCH Dielectric Material. Thin Solid Films 2020, 704, 138010. [Google Scholar] [CrossRef]
- Fisher, I.; Eizenberg, M. Copper ion diffusion in porous and nonporous SiO2-based dielectric using bias thermal stress and thermal stress tests. Thin Solid Films 2008, 516, 4111. [Google Scholar]
As Dep. | Annealed | |
---|---|---|
Cu/SiO2 | 86.2% | 100% |
CoW/SiO2 | 0% | 5.0% |
CoB/SiO2 | 0% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-L.; Wang, K.-H.; Lee, C.-Y.; Chen, G.-S.; Fang, J.-S. Comparison of CoW/SiO2 and CoB/SiO2 Interconnects from the Perspective of Electrical and Reliability Characteristics. Materials 2023, 16, 1452. https://doi.org/10.3390/ma16041452
Cheng Y-L, Wang K-H, Lee C-Y, Chen G-S, Fang J-S. Comparison of CoW/SiO2 and CoB/SiO2 Interconnects from the Perspective of Electrical and Reliability Characteristics. Materials. 2023; 16(4):1452. https://doi.org/10.3390/ma16041452
Chicago/Turabian StyleCheng, Yi-Lung, Kai-Hsieh Wang, Chih-Yen Lee, Giin-Shan Chen, and Jau-Shiung Fang. 2023. "Comparison of CoW/SiO2 and CoB/SiO2 Interconnects from the Perspective of Electrical and Reliability Characteristics" Materials 16, no. 4: 1452. https://doi.org/10.3390/ma16041452
APA StyleCheng, Y. -L., Wang, K. -H., Lee, C. -Y., Chen, G. -S., & Fang, J. -S. (2023). Comparison of CoW/SiO2 and CoB/SiO2 Interconnects from the Perspective of Electrical and Reliability Characteristics. Materials, 16(4), 1452. https://doi.org/10.3390/ma16041452