The Evaluation of Interface Quality in HfO2 Films Probed by Time-Dependent Second-Harmonic Generation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tataroğlu, A.; Altındal, Ş. Analysis of electrical characteristics of Au/SiO2/n-Si (MOS) capacitors using the high–low frequency capacitance and conductance methods. Microelectron. Eng. 2008, 85, 2256. [Google Scholar] [CrossRef]
- Turut, A.; Karabulut, A.; Ejderha, K.; Bıyıklı, N. Capacitance–conductance–current–voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater. Sci. Semicond. Process. 2015, 39, 400. [Google Scholar] [CrossRef]
- Kahraman, A.; Yilmaz, E.; Kaya, S.; Aktag, A. Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors. J. Mater. Sci. Mater. Electron. 2015, 26, 8277. [Google Scholar] [CrossRef]
- Zeng, K.; Jia, Y.; Singisetti, U. Interface State Density in Atomic Layer Deposited SiO2/β-Ga2O3 (201) MOSCAPsPs. IEEE Electron Device Lett. 2016, 37, 906. [Google Scholar] [CrossRef]
- Kim, H.; Yun, H.J.; Choi, S.; Choi, B.J. Interface trap characterization of AlN/GaN heterostructure with Al2O3, HfO2, and HfO2/Al2O3 dielectrics. J. Vac. Sci. Technol. B 2019, 37, 041203. [Google Scholar] [CrossRef]
- Zhao, P.; Khosravi, A.; Azcatl, A.; Bolshakov, P.; Mirabelli, G.; Caruso, E.; Hinkle, C.L.; Hurley, P.K.; Wallace, R.M.; Young, C.D. Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis. 2D Mater. 2018, 5, 031002. [Google Scholar] [CrossRef]
- Vinod, A.; Rathore, M.S.; Rao, N.S.J.V. Effects of annealing on quality and stoichiometry of HfO2 thin films grown by RF magnetron sputtering. Vacuum 2018, 155, 339. [Google Scholar] [CrossRef]
- Fedorenko, Y.G.; Truong, L.; Afanas’ev, V.V.; Stesmans, A. Energy distribution of the (100)Si/HfO2 interface states. Appl. Phys. Lett. 2004, 84, 4771. [Google Scholar] [CrossRef]
- Chi, X.; Lan, X.; Lu, C.; Hong, H.; Li, C.; Chen, S.; Lai, H.; Huang, W.; Xu, J. An improvement of HfO2/Ge interface by in situ remote N2 plasma pretreatment for Ge MOS devices. Mater. Res. Express 2016, 3, 035012. [Google Scholar] [CrossRef]
- Kanbur, H.; Altındal, Ş.; Tataroğlu, A. The effect of interface states, excess capacitance and series resistance in the Al/SiO2/p-Si Schottky diodes. Appl. Surf. Sci. 2005, 252, 1732. [Google Scholar] [CrossRef]
- Novkovski, N. Modification of the Terman method for determination of interface states in metal–insulator–semiconductor structures. J. Phys. Commun. 2017, 1, 035006. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T.-W. Border Trap Extraction with Capacitance- Equivalent Thickness to Reflect the Quantum Mechanical Effect on Atomic Layer Deposition High-k/In0.53Ga0.47As on 300-mm Si Substrate. Sci. Rep. 2019, 9, 9861. [Google Scholar] [CrossRef] [PubMed]
- Mahata, C.; Byun, Y.C.; An, C.H.; Choi, S.; An, Y.; Kim, H. Comparative study of atomic-layer-deposited stacked (HfO2/Al2O3) and nanolaminated (HfAlOx) dielectrics on In0.53Ga0.47As. ACS Appl. Mater. Interfaces 2013, 5, 4195. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-H.; Zheng, X.-F.; Wang, A.-C.; Wang, Y.-Z.; Wen, H.-Y.; Liu, Z.-J.; Li, X.-W.; Wu, Y.-H. Distribution of electron traps in SiO2/HfO2 nMOSFET*. Chin. Phys. B 2016, 25, 057702. [Google Scholar] [CrossRef]
- Haffner, T.; Mahjoub, M.A.; Labau, S.; Aubin, J.; Hartmann, J.M.; Ghibaudo, G.; David, S.; Pelissier, B.; Bassani, F.; Salem, B. Improvement of the electrical performance of Au/Ti/HfO2/Ge0.9Sn0.1 p-MOS capacitors by using interfacial layers. Appl. Phys. Lett. 2019, 115, 171601. [Google Scholar] [CrossRef]
- Yen, T.-Y.; Shih, M.-T.; Song, L.-F.; Hung, K.-M.; Lo, K.-Y. Unveiling dopant concentration in boron doped Si ultrathin film: Enhanced analysis using time-dependent second harmonic generation. Surf. Interfaces 2023, 41, 103236. [Google Scholar] [CrossRef]
- Lüpke, G.; Bottomley, D.J.; Driel, H.M. SiO2/Si interfacial structure on vicinal Si(100) studied with second-harmonic generation. Phys. Rev. B 1993, 47, 10389. [Google Scholar] [CrossRef] [PubMed]
- Fiore, J.L.; Fomenko, V.V.; Bodlaki, D.; Borguet, E. Second harmonic generation probing of dopant type and density at the Si/SiO2 interface. Appl. Phys. Lett. 2011, 98, 041905. [Google Scholar] [CrossRef]
- Bhowmik, G.; An, Y.Q.; Schujman, S.; Diebold, A.C.; Huang, M. Optical second harmonic generation from silicon (100) crystals with process tailored surface and embedded silver nanostructures for silicon nonlinear nanophotonics. J. Appl. Phys. 2020, 128, 165106. [Google Scholar] [CrossRef]
- Yen, T.-Y.; Huang, Y.-H.; Shih, M.-T.; Chen, W.-T.; Hung, K.-M.; Lo, K.-Y. Correlation of time-dependent nonlinear response with phosphorus concentration in Si ultrathin film. Surf. Interfaces 2023, 36, 102541. [Google Scholar] [CrossRef]
- Fomenko, V.; Gusev, E.P.; Borguet, E. Optical second harmonic generation studies of ultrathin high-k dielectric stacks. J. Appl. Phys. 2005, 97, 083771. [Google Scholar] [CrossRef]
- Marka, Z.; Singh, S.K.; Wang, W.; Lee, S.C.; Kavich, J.; Glebov, B.; Rashkeev, S.N.; Karmarkar, A.P.; Albridge, R.C.; Pantelides, S.T.; et al. Characterization of X-ray radiation damage in Si/SiO/sub 2/structures using second-harmonic generation. IEEE Trans. Nucl. Sci. 2000, 47, 2256. [Google Scholar] [CrossRef]
- Lee, K.; Park, K.; Lee, H.-J.; Song, M.S.; Lee, K.C.; Namkung, J.; Lee, J.H.; Park, J.; Chae, S.C.J.S.R. Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci. Rep. 2021, 11, 6290. [Google Scholar] [CrossRef] [PubMed]
- Gielis, J.J.H.; Hoex, B.; van de Sanden, M.C.M.; Kessels, W.M.M. Negative charge and charging dynamics in Al2O3 films on Si characterized by second-harmonic generation. J. Appl. Phys. 2008, 104, 073701. [Google Scholar] [CrossRef]
- Park, H.; Qi, J.; Xu, Y.; Varga, K.; Weiss, S.M.; Rogers, B.R.; Lüpke, G.; Tolk, N. Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation. Appl. Phys. Lett. 2009, 95, 062102. [Google Scholar] [CrossRef]
- Damianos, D.; Vitrant, G.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Ghibaudo, G.; Lei, M.; Changala, J.; Bouchard, A.; Mescot, X.; Gri, M.; et al. Field-effect passivation of Si by ALD-Al2O3: Second harmonic generation monitoring and simulation. J. Appl. Phys. 2018, 124, 125309. [Google Scholar] [CrossRef]
- Price, J.; An, Y.; Lysaght, P.; Bersuker, G.; Downer, M.J.A.P.L. Resonant photoionization of defects in Si/SiO2/HfO2 film stacks observed by second-harmonic generation. Appl. Phys. Lett. 2009, 95, 052906. [Google Scholar] [CrossRef]
- Jun, B.; White, Y.V.; Schrimpf, R.D.; Fleetwood, D.M.; Brunier, F.; Bresson, N.; Cristoloveanu, S.; Tolk, N.H. Characterization of multiple Si∕SiO2 interfaces in silicon-on-insulator materials via second-harmonic generation. Appl. Phys. Lett. 2004, 85, 3095. [Google Scholar] [CrossRef]
- Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field. Solid-State Electron. 2018, 143, 90. [Google Scholar] [CrossRef]
- Hao, L.; He, G.; Zheng, G.; Gao, Q.; Qiao, L.; Fang, Z. Interface Optimization and Modulation of Leakage Current Conduction Mechanism of Yb2O3/GaSb MOS Capacitors with ALD-Driven Laminated Interlayers. ACS Appl. Electron. Mater. 2021, 3, 872. [Google Scholar] [CrossRef]
- Qiao, L.; He, G.; Hao, L.; Lu, J.; Gao, Q.; Zhang, M.; Fang, Z. Interface Optimization of Passivated Er2O3/Al2O3/InP MOS Capacitors and Modulation of Leakage Current Conduction Mechanism. IEEE Electron Device Lett. 2021, 68, 2899. [Google Scholar] [CrossRef]
- Han, Y.; Sun, J.; Xi, F.; Bae, J.-H.; Grützmacher, D.; Zhao, Q.-T. Cryogenic characteristics of UTBB SOI Schottky-Barrier MOSFETs. Solid-State Electron. 2022, 194, 108351. [Google Scholar] [CrossRef]
- Cai, W.; Takenaka, M.; Takagi, S. Evaluation of interface state density of strained-Si metal-oxide-semiconductor interfaces by conductance method. J. Appl. Phys. 2014, 115, 094509. [Google Scholar] [CrossRef]
- Soumya, S.S. Effect of annealing temperature on the electrical and photoluminascence properties of tin oxide thin films prepared by sol-gel spin coating technique. Mater. Today Proc. 2021, 46, 5748. [Google Scholar] [CrossRef]
- Nath, M.; Roy, A. Interface and electrical properties of ultra-thin HfO2 film grown by radio frequency sputtering. Phys. B: Condens. Matter 2016, 482, 43. [Google Scholar] [CrossRef]
- Aktağ, A.; Mutale, A.; Yılmaz, E. Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 9044. [Google Scholar] [CrossRef]
- Lianfeng, Y.; Jeremy, R.W.; Richard, C.W.W.; Mirela, B.; John, R.B.; Asen, A.; Scott, R. Si/SiGe heterostructure parameters for device simulations. Semicond. Sci. Technol. 2004, 19, 1174. [Google Scholar]
- Scheidt, T.; Rohwer, E.G.; von Bergmann, H.M.; Stafast, H. Optical second harmonic imaging: A versatile tool to investigate semiconductor surfaces and interfaces. Eur. Phys. J. Appl. Phys. 2004, 27, 393. [Google Scholar] [CrossRef]
- Mallick, B.; Saha, D.; Datta, A.; Ganguly, S. Noninvasive and Contactless Characterization of Electronic Properties at the Semiconductor/Dielectric Interface Using Optical Second-Harmonic Generation. ACS Appl. Mater. Interfaces 2023, 15, 38888. [Google Scholar] [CrossRef] [PubMed]
- Marka, Z.; Pasternak, R.; Rashkeev, S.N.; Jiang, Y.; Pantelides, S.T.; Tolk, N.H.; Roy, P.K.; Kozub, J. Band offsets measured by internal photoemission-induced second-harmonic generation. Phys. Rev. B 2003, 67, 045302. [Google Scholar] [CrossRef]
- Lei, M.; Yum, J.H.; Banerjee, S.K.; Bersuker, G.; Downer, M.C. Band offsets of atomic layer deposited Al2O3 and HfO2 on Si measured by linear and nonlinear internal photoemission. Phys. Status Solidi B 2012, 249, 1160. [Google Scholar] [CrossRef]
Sample | (V) | (V) | (×1011 cm−2) | (×1012 eV−1cm−2) |
---|---|---|---|---|
5 nm | 0.80 | 0.43 | 1.43 | 3.09 |
10 nm | 0.79 | 0.60 | 1.96 | 2.08 |
15 nm | 0.88 | 0.51 | 2.74 | 3.81 |
20 nm | −0.82 | 0.63 | 2.39 | 4.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Ye, L.; Zhao, W.; Huang, C.; Liu, X.; Gao, W.; Li, T.; Min, T.; Yang, J.; Tian, M.; et al. The Evaluation of Interface Quality in HfO2 Films Probed by Time-Dependent Second-Harmonic Generation. Materials 2024, 17, 3471. https://doi.org/10.3390/ma17143471
Zhang L, Ye L, Zhao W, Huang C, Liu X, Gao W, Li T, Min T, Yang J, Tian M, et al. The Evaluation of Interface Quality in HfO2 Films Probed by Time-Dependent Second-Harmonic Generation. Materials. 2024; 17(14):3471. https://doi.org/10.3390/ma17143471
Chicago/Turabian StyleZhang, Libo, Li Ye, Weiwei Zhao, Chongji Huang, Xue Liu, Wenshuai Gao, Tao Li, Tai Min, Jinbo Yang, Mingliang Tian, and et al. 2024. "The Evaluation of Interface Quality in HfO2 Films Probed by Time-Dependent Second-Harmonic Generation" Materials 17, no. 14: 3471. https://doi.org/10.3390/ma17143471
APA StyleZhang, L., Ye, L., Zhao, W., Huang, C., Liu, X., Gao, W., Li, T., Min, T., Yang, J., Tian, M., & Chen, X. (2024). The Evaluation of Interface Quality in HfO2 Films Probed by Time-Dependent Second-Harmonic Generation. Materials, 17(14), 3471. https://doi.org/10.3390/ma17143471