Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Synthesis
2.1.1. Microgel
2.1.2. Inorganic Ag-TiO2 NPs
2.1.3. Composite Nanoparticles
2.1.4. Rhodamine B Solution
2.2. Characterization Techniques
2.3. Photocatalytic Test
2.4. Biological Anticancer Effect
2.4.1. Cell Cultures
2.4.2. Estimation of Cell Proliferation Rate
2.4.3. Cytotoxicity Test
3. Results and Discussion
3.1. Characterization of the Nanoparticles and the Composite Materials
3.1.1. XRD Analysis
3.1.2. FT-IR Analysis
3.1.3. Raman Analysis
3.1.4. Energy Band Gap Estimation
3.1.5. Dynamic Light Scattering (DLS)
3.1.6. TEM Analysis
3.2. Photocatalytic Activity Experiments
3.2.1. Photocatalytic Efficiency and Kinetics
3.2.2. Effect of Radical Scavengers—Proposed Reaction Mechanism
3.2.3. Photocatalytic Mechanism
- (a)
- Upon irradiation with an appropriate light source, providing energy at minimum equal to the value of the photocatalyst Eg, the electrons that exist on the VB are agitated and finally move to the CB of the semiconductor. As a consequence, positively charged holes are left in the VB of the semiconductor, oxidizing donor molecules and reacting with the available water molecules in order to generate hydroxyl radicals that have strong oxidizing potential, which is capable of degrading various pollutants or damaging or killing biomolecules, leading cells to undergo apoptosis.
- (b)
- The electrons of the CB are ready to react with the nearby dissolved oxygen species, forming superoxide ions; thus, these electrons can induce and mediate the redox reactions.
- (c)
- The electrons and the produced holes undergo consequent oxidation and reduction reactions with any species that are adsorbed on the semiconductor surface, giving the necessary products as separate for a short time.
3.3. Biological Effect
3.3.1. Effect on Cell Proliferation
3.3.2. Effect on Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Ziental, D.; Czarczynska-Coslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenot, P.; Cho, J.; Wavhal, D.; Timmons, R.B.; Tang, L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagopati, N.; Evangelou, K.; Falaras, P.; Tsilibary, E.C.; Vasileiou, P.; Havaki, S.; Angelopoulou, A.; Pavlatou, E.A.; Gorgoulis, V.G. Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol. Ther. 2021, 222, 107795. [Google Scholar] [CrossRef] [PubMed]
- Anucha, C.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancment for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. CEJ Adv. 2022, 10, 100262. [Google Scholar]
- Amin, S.-A.; Pazouki, M.; Hosseinnia, A. Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technol. 2009, 196, 241–245. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Mohamed, Y.M.A.; Abdelkhalik, S.; El Nazer, H.A.; Attia Attia, Y. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag and Pt doped TiO2 nanoparticles under visible light irradiation. Environ. Sci. Pollut. Res. 2020, 27, 35828–35836. [Google Scholar] [CrossRef]
- Ali, A.; Bano, S.; Poojary, S.S.; Priyadarshi, R.; Choudhary, A.; Kumar, D.; Negi, Y.-S. Comparative analysis of TiO2 and Ag nanoparticles on xylan/chitosan conjugate matrix for wound healing application. Int. J. Polym. Mater. 2020, 75, 376–385. [Google Scholar] [CrossRef]
- Ameta, R.; Solanki, M.; Benjamin, S.; Ameta, S.C. Advanced Oxidation Processes for Waste Water Treatment Emerging Green Chemical Technology, 1st ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Khan, F.A. Applications of Nanomaterilas in Human Health, 1st ed.; Springer: Singapore, 2020. [Google Scholar]
- Mikhailova, E.O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; El Kacem Qaiss, A.; Bouhfid, R. Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environ. Sci. Pollut. Res. 2021, 28, 44638–44666. [Google Scholar] [CrossRef]
- Ahamed, M.; Majeed Khan, M.; Akhtar, M.-J.; Alhadlaq, H.A.; Alshamsan, A. Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci. Rep. 2017, 7, 17662. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Sohn, Y.; Pradhan, D. Nanocomposites for Visible Light-Induced Photocatalysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bahadur, J.; Agrawal, S.; Panwar, V.; Parveen, A.; Pal, K. Antibacterial Properties of Silver Doped TiO2 Nanoparticles Synthesized via Sol-Gel Technique. Macromol. Res. 2016, 24, 488–493. [Google Scholar] [CrossRef]
- Mandari, K.K.; Kwak, B.S.; Kumar, A.; Police, R.; Kang, M. In-situ photo-reduction of silver particles and their SPR effect in enhancing the photocatalytic water splitting of Ag2O/TiO2 photocatalysts under solar light irradiation: A case study. Mat. Res. Bull. 2017, 95, 515–524. [Google Scholar] [CrossRef]
- Gupta, K.; Singh, R.; Pandey, A.; Pandey, A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 2013, 4, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Tian, B.; Wang, L.; Xing, M.; Lei, J. Photocatalysis: Fundamentals, Materials and Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ainali, N.M.; Kalaronis, D.; Evgenidou, E.; Bikiaris, D.N.; Lambropoulou, D.A. Insights into Biodegradable Polymer-Supported Titanium Dioxide Photocatalysts for Environmental Remediation. Macromol 2021, 1, 201–233. [Google Scholar] [CrossRef]
- Cervantes, F.J.; Ramírez-Montoya, L.A. Immobilized Nanomaterials for Environmental Applications. Molecules 2022, 27, 6659. [Google Scholar] [CrossRef]
- Ameta, R.; Solanki, M.; Benjamin, S. Photocatalysis. In Advanced Oxidation Processes for Waste Water Treatment; Digital Science & Research Solutions, Dimensions: London, UK, 2018; pp. 135–175. [Google Scholar]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.T.J.; Huber, Ν.; Landfester, Κ.; Zhang, Κ. Dual-Responsive Photocatalytic Polymer Nanogels. Angew Chem. 2019, 58, 10677–10681. [Google Scholar] [CrossRef]
- Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C.; Meier, W. Stimuli-Responsive Polymers and Their Applications in Nanomedicine. Biointerphases 2012, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. [Google Scholar] [CrossRef]
- Fang, R.; Pi, J.; Wei, T.; Ali, A.; Guo, L. Stimulus-Responsive Polymers Based on Polypeptoid Skeletons. Polymers 2021, 13, 2089. [Google Scholar] [CrossRef]
- Zhilin, D.; Pich, A. Nano- and microgels: A review for educators. CTI 2021, 3, 155–167. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Chu, S.; Shi, X.; Tian, Y.; Gao, F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front. Oncol. 2022, 12, 855019. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Varga, I.; Kardos, A.; Dobryden, I.; Claesson, P.M. Temperature-Dependent Nanomechanical Properties of Adsorbed Poly-NIPAm Microgel Particles Immersed in Water. Langmuir 2021, 37, 1902–1912. [Google Scholar] [CrossRef]
- Aflori, M. Smart Nanomaterials for Biomedical Applications-A Review. Nanomaterials 2021, 11, 396. [Google Scholar] [CrossRef]
- Pham, S.H.; Choi, Y.; Choi, J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020, 12, 630. [Google Scholar] [CrossRef]
- Galata, E.; Georgakopoulou, E.A.; Kassalia, M.-E.; Papadopoulou-Fermeli, N.; Pavlatou, E.A. Development of Smart Composites Based on Doped-TiO2 Nanoparticles with Visible Light Anticancer Properties. Materials 2019, 12, 2589. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Han, X.; Dong, B.; Shi, F. Stimuli responsiveness, propulsion and application of the stimuli-responsive polymer based micromotor. Appl. Mater. Today 2021, 25, 101250. [Google Scholar] [CrossRef]
- Chen, H.; Hsieh, Y.-L. Dual Temperature- and pH-Sensitive Hydrogels from Interpenetrating Networks and Copolymerization of N-Isopropylacrylamide. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3293–3301. [Google Scholar] [CrossRef]
- Futscher, M.H.; Philipp, M.; Müller-Buschbaum, P.; Schulte, A. The Role of Backbone Hydration of Poly(N-isopropyl acrylamide) Across the Volume Phase Transition Compared to its Monomer. Sci. Rep. 2017, 7, 17012. [Google Scholar] [CrossRef] [Green Version]
- Haq, M.A.; Su, Y.; Wang, D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70 Pt 1, 842–855. [Google Scholar] [CrossRef]
- Begum, R.; Naseem, K.; Farooqi, Z. A review of responsive hybrid microgels fabricated with silver nanoparticles: Synthesis, classification, characterization and applications. J. Solgel Sci. Technol. 2016, 77, 497–515. [Google Scholar] [CrossRef]
- Coutinho, C.A.; Harrinauth, R.K.; Gupta, V.K. Settling characteristics of composites of PNIPAM microgels and TiO2 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2008, 318, 111–121. [Google Scholar] [CrossRef]
- Sun, H.; Kabb, C.P.; Sims, M.B.; Sumerlin, B.S. Architecture-transformable polymers: Reshaping the future ofstimuli-responsive polymers. Prog. Polym. Sci. 2019, 89, 61–75. [Google Scholar] [CrossRef]
- Kawaguchi, H. On Going to a New Era of Microgel Exhibiting Volume Phase Transition. Gels 2020, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.; Agrawal, R. Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers 2018, 10, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Wang, C.; Liu, H.; Wang, C.; Liu, X.; Tong, Z. Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer 2009, 50, 2587–2594. [Google Scholar] [CrossRef]
- Lagopati, N.; Tsilibary, E.P.; Falaras, P.; Papazafiri, P.; Pavlatou, E.A.; Kotsopoulou, E.; Kitsiou, P. Effect of nanostructured TiO₂ crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int. J. Nanomed. 2014, 9, 3219–3230. [Google Scholar]
- Lagopati, N.; Kitsiou, P.; Kontos, A.; Venieratos, P.; Kotsopoulou, E.; Kontos, A.; Dionysiou, D.; Pispas, S.; Tsilibary, E.; Falaras, P. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J. Photochem. Photobiol. A Chem. 2010, 214, 215–223. [Google Scholar] [CrossRef]
- Lagopati, N.; Kotsinas, A.; Veroutis, D.; Evangelou, K.; Papaspyropoulos, A.; Arfanis, M.; Falaras, P.; Kitsiou, P.V.; Pateras, I.; Bergonzini, A.; et al. Effect of Silver-modified Nanostructured Titanium Dioxide in Cancer. Cancer Genom. Proteom. 2021, 18 (Suppl. S3), 425–439. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 2017, 1, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Piccinini, F.; Tesei, A.; Arienti, C.; Bevilacqua, A. Cell Counting and Viability Assessment of 2D and 3D Cell Cultures: Expected Reliability of the Trypan Blue Assay. Biol. Proced. Online 2017, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Acar, E.; Sun, L. A generalized Kruskal–Wallis test incorporating group uncertainty with application to genetic association studies. Biometrics 2019, 69, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.-Y.; Hsu, C.-F.; Wu, M.-J.; Chen, C.-N.; Huang, J.-J. Ag–TiO2 composite photoelectrode for dye-sensitized solar cell. Appl. Phys. A 2017, 123, 357. [Google Scholar] [CrossRef]
- Pu, S.; Hou, Y.; Chen, H.; Deng, D.; Yang, Z.; Xue, S.; Zhu, R.; Diao, Z.; Chu, W. An Efficient Photocatalyst for Fast Reduction of Cr(VI) by Ultra-Trace Silver Enhanced Titania in Aqueous Solution. Catalysts 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Ma, J.; Liu, J.; Qiang, L.; Xue, J. Facile Synthesis of Thermo-responsive TiO2/PNIPAM Composite with Switchable Photocatalytic Performance. Fibers Polym. 2020, 21, 717–723. [Google Scholar] [CrossRef]
- Yu, C.; Tang, J.; Liu, X.; Ren, X.; Zhen, M.; Wang, L. Green Biosynthesis of Silver Nanoparticles Using Eriobotrya japonica (Thunb.) Leaf Extract for Reductive Catalysis. Materials 2019, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Ashkarran, A.; Aghigh, S.; Kavianipour, M.; Farahani, N. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr. Appl. Phys. 2011, 11, 1048–1055. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018, 212, 325–335. [Google Scholar] [CrossRef]
- Zdravković, A.; Nikolić, L.; Ilić-Stojanović, S.; Nikolić, V.; Savić, S.; Kapor, A. The evaluation of temperature and pH influences on equilibrium. Hem. Ind. 2017, 71, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Assaf, S.M.; Abul-Haija, Y.M.; Fares, M.M. Versatile Pectin Grafted Poly (N-isopropylacrylamide); Modulated Targeted Drug Release. J. Macromol. Sci.-Pure Appl. Chem. 2011, 48, 493–502. [Google Scholar] [CrossRef]
- Thakur, S.; Arotiba, O. Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate-based TiO2 hydrogel nanocomposite. Adsorpt. Sci. Technol. 2017, 36, 458–477. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, Y.; Wang, H.; Wang, Y.; Zhu, H.; Chen, Y.; Chen, S.; Jin, S.; Yang, Z.; Li, P.; et al. Preparation of the Sodium Alginate-g-(PolyacrylicAcid-co-Allyltrimethylammonium Chloride) Polyampholytic Superabsorbent Polymer and Its Dye Adsorption Property. Mar. Drugs 2018, 476, 1–20. [Google Scholar]
- Wang, S.; Lin, L.; Zhu, A. Preparation of multisensitive poly (N-isopropylacrylamide-co-acrylic acid)/TiO2 composites for degradation of methyl orange. Eur. Polym. J. 2011, 47, 1168–1175. [Google Scholar] [CrossRef]
- Hirashima, Y.; Suzuki, A. Formation and destruction of hydrogen bonds in gels and in aqueous solutions of N-isopropylacrylamide and sodium acrylate observed by ATR-FTIR spectroscopy. J. Colloid Interface Sci. 2007, 312, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Schilli, C.; Zhang, M.; Rizzardo, E.; Thang, S.; Chong, Y.; Edwards, K.; Karlsson, G.; Muller, H. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 2004, 37, 7861–7866. [Google Scholar] [CrossRef]
- Yamauc, H.; Maeda, Y. LCST and UCST Behavior of Poly(N-isopropylacrylamide) in DMSO/Water Mixed Solvents Studied by IR and Micro-Raman Spectroscopy. J. Phys. Chem. B 2007, 111, 12964–12968. [Google Scholar] [CrossRef]
- Kunnamareddy, M.; Diravidamani, B.; Rajendran, R.; Singaram, B.; Varadharajan, K. Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue. Mater. Sci. Mater. Electron. 2018, 29, 18111–18119. [Google Scholar] [CrossRef]
- Rajkumar, S.; Venkatraman, M.; Suguna, K.; Karuppasamy, P.; Senthil Pandian, M.; Ramasamy, P. Synthesis of Ag-incorporated TiO2 nanoparticles by simple green approach as working electrode for dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 2022, 33, 4965–4973. [Google Scholar] [CrossRef]
- Mohamed, H.S.; Rabia, M.; Zhou, X.-G.; Qin, X.-S.; Khabiri, G.; Shaban, M.; Younus, H.; Taha, S.; Hu, Z.-Y.; Liu, J.; et al. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2. J. Mater. Sci. Technol. 2021, 83, 179–187. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Ramana Reddy, M.; Sayanna, R. Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt. Mater. 2020, 108, 110401. [Google Scholar] [CrossRef]
- Nigro, V.; Ripanti, F.; Angelini, R.; Sarra, A.; Bertoldo, M.; Buratti, E.; Postorino, P.; Ruzicka, B. Molecular mechanisms driving the microgels behaviour: A Raman spectroscopy and dynamic light scattering study. J. Mol. Liq. 2019, 284, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Nigro, V.; Angelini, R.; Rosi, B.; Bertoldo, M.; Buratti, E.; Casciardi, S.; Sennato, S.; Ruzicka, B. Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid). J. Colloid Interface Sci. 2019, 545, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Sanz, B.; Bilderling, C.; Tuninetti, J.; Pietrasanta, L.; Mijangos, C.; Longo, G.; Azzaroni, O.; Giuss, J. Thermally-Induced Softening of PNIPAm-Based Nanopillar Arrays. Soft Matter 2017, 13, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV−Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar]
- Iqbal, S.; Zahoor, C.; Musaddiq, S.; Musaddiq, S.; Hussain, M.; Begum, R.; Irfan, A.; Azam, M.; Farooqi, Z.H. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol. Environ. Saf. 2020, 202, 110924. [Google Scholar] [CrossRef]
- Ren, Y.; Xing, S.; Wang, J.; Ling, Y.; Zhao, D.; Zhao, D.; Wang, H.; Wang, N.; Jiang, W.; Wu, S.; et al. Weak-light-driven Ag–TiO2 photocatalyst and bactericide prepared by coprecipitation with effective Ag doping and deposition. Opt. Mater. 2022, 124, 111993. [Google Scholar] [CrossRef]
- Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021, 26, 3813. [Google Scholar] [CrossRef]
- Le, T.-T.-T.; Tran, T.-D. Photocatalytic Degradation of Rhodamine B by C and N Co-doped TiO2 Nanoparticles under Visible-Light Irradiation. J. Chem. 2020, 2020, 4310513. [Google Scholar] [CrossRef]
- Alhaji, M.-H.; Sanaullah, K.; Salleh, S.-F.; Baini, R.; Lim, S.-F.; Rigit, A.-R.-H.; Said, K.-A.-M.; Khan, A. Photo-oxidation of pre-treated palm oil mill Effluent using cylindrical column immobilized photoreactor. Process Saf. Environ. Prot. 2018, 117, 180–189. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, N.; Jalil, A.; Triwahyono, S.; Efendi, J.; Mukti, R.; Jusoh, R.; Jusoh, N.; Karim, A.; Salleh, N.; Suendo, V. Direct in situ activation of Ag0nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Appl. Surf. Sci. 2015, 338, 75–84. [Google Scholar] [CrossRef]
- Ratshiedana, R.; Fakayode, O.; Kumar Mishra, A.; Tawanda Kuvarega, A. Visible-light photocatalytic degradation of tartrazine using hydrothermal synthesized Ag-doped TiO2 nanoparticles. J. Water Process. Eng. 2021, 44, 102372. [Google Scholar] [CrossRef]
- Liang, H.; Jia, Z.; Zhang, H.; Wang, X.; Wang, J. Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. Appl. Surf. Sci. 2017, 442, 1–10. [Google Scholar] [CrossRef]
- Lanzalaco, S.; Armelin, E. Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017, 3, 36. [Google Scholar] [CrossRef]
- Chihara, Y.; Fujimoto, K.; Kondo, H.; Moriwaka, Y.; Sasahira, T.; Hirao, Y.; Kuniyasu, H. Anti-tumor effects of liposome-encapsulated titanium dioxide in nude mice. Pathobiology 2007, 74, 353–358. [Google Scholar] [CrossRef]
- Voycheva, C.; Slavkova, M.; Popova, T.; Tzankova, D.; Tosheva, A.; Aluani, D.; Tzankova, V.; Ivanova, I.; Tzankov, S.; Spassova, I.; et al. Synthesis and characterization of PnVCL grafted agar with potential temperature-sensitive delivery of Doxorubicin. J. Drug Deliv. Sci. Technol. 2022, 76, 103725. [Google Scholar] [CrossRef]
- Castillo, B.E.; Prokhorov, E.; Luna-Bárcenas, G.; Kovalenko, Y. Potential Use of Chitosan-TiO2 Nanocomposites for the Electroanalytical Detection of Imidacloprid. Polymers 2022, 14, 1686. [Google Scholar] [CrossRef]
- Pippa, N.; Naziris, N.; Stellas, D.; Massala, C.; Zouliati, K.; Pispas, S.; Demetzos, C.; Forys, A.; Marcinkowski, A.; Trzebicka, B. PEO-b-PCL grafted niosomes: The cooperativilty of amphiphilic components and their properties in vitro and in vivo. Colloids Surf. B Biointerfaces 2019, 177, 338–345. [Google Scholar] [CrossRef]
- Pippa, N.; Kaditi, E.; Pispas, S.; Demetzos, C. PEO-b-PCL–DPPC chimeric nanocarriers: Self-assembly aspects in aqueous and biological media and drug incorporation. Soft Matter 2013, 9, 4073–4082. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; da Silva, L.P.; Pirraco, R.P.; Ma, M.; Yang, L.; Reis, R.L.; Chen, J. A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructure and gel behaviors as a general drug carrier for drug release. Polym. Chem. 2018, 9, 4063–4072. [Google Scholar] [CrossRef]
- Nii, T.; Makino, K.; Tabata, Y. Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers 2020, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Brancato, V.; Oliveira, J.M.; Correlo, V.M.; Reis, R.L.; Kundu, S.C. Could 3D models of cancer enhance drug screening? Biomaterials 2020, 232, 119744. [Google Scholar] [CrossRef] [PubMed]
Material | R2 | Kapp (min−1) | Degradation % |
---|---|---|---|
Microgel | 0.86271 | 2.96 × 10−4 | 4.1% |
Rhodamine B | 0.95107 | 3.37 × 10−4 | 4.76% |
Ag-TiO2 | 0.91016 | 1.13 × 10−2 | 85.3% |
Ag-TiO2/microgel | 0.96734 | 1.84 × 10−2 | 95% |
Scavenger | ROS |
---|---|
EDTA-2Na | hole (h+) |
BQ | superoxide radicals(·O2−) |
IPA | hydroxyl radical (·OH) |
Ag-TiO2 | R2 | Kapp (min−1) |
---|---|---|
EDTA-2Na | 0.87798 | 3.85 × 10−3 |
BQ | 0.94117 | 8.86 × 10−3 |
IPA | 0.76272 | 3.88 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou-Fermeli, N.; Lagopati, N.; Pippa, N.; Sakellis, E.; Boukos, N.; Gorgoulis, V.G.; Gazouli, M.; Pavlatou, E.A. Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics 2023, 15, 135. https://doi.org/10.3390/pharmaceutics15010135
Papadopoulou-Fermeli N, Lagopati N, Pippa N, Sakellis E, Boukos N, Gorgoulis VG, Gazouli M, Pavlatou EA. Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics. 2023; 15(1):135. https://doi.org/10.3390/pharmaceutics15010135
Chicago/Turabian StylePapadopoulou-Fermeli, Nefeli, Nefeli Lagopati, Natassa Pippa, Elias Sakellis, Nikos Boukos, Vassilis G. Gorgoulis, Maria Gazouli, and Evangelia A. Pavlatou. 2023. "Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties" Pharmaceutics 15, no. 1: 135. https://doi.org/10.3390/pharmaceutics15010135
APA StylePapadopoulou-Fermeli, N., Lagopati, N., Pippa, N., Sakellis, E., Boukos, N., Gorgoulis, V. G., Gazouli, M., & Pavlatou, E. A. (2023). Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics, 15(1), 135. https://doi.org/10.3390/pharmaceutics15010135