The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Generalized DiD Model
2.1.2. Event Study
2.1.3. Heterogeneity Analysis
2.2. Data
2.2.1. Air Pollution
2.2.2. City Anti-Contagion Policy (CAP) Data
2.2.3. Meteorological Variables
2.2.4. Socio-Economic Status
3. Results
3.1. The Short-Term Impact of CAPs
3.2. The Medium-Term Impacts of CAPs
3.3. Heterogeneity
3.4. Robustness Check
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
City | Province | CAPs | City | Province | CAPs |
---|---|---|---|---|---|
Fuzhou | Fujian | 6 February 2020 | Fuzhou | Jiangxi | 4 February 2020 |
Anshun | Guizhou | 5 February 2020 | Jingdezhen | Jiangxi | 4 February 2020 |
Qinhuangdao | Hebei | 25 January 2020 | Ganzhou | Jiangxi | 6 February 2020 |
Tangshan | Hebei | 28 January 2020 | Jiujiang | Jiangxi | 6 February 2020 |
Zhengzhou | Henan | 4 February 2020 | Yingtan | Jiangxi | 6 February 2020 |
Zhumadian | Henan | 4 February 2020 | Chaoyang | Liaoning | 5 February 2020 |
Xinyang | Henan | 6 February 2020 | Dalian | Liaoning | 5 February 2020 |
Harbin | Heilongjiang | 4 February 2020 | Dandong | Liaoning | 5 February 2020 |
Huanggang | Hubei | 23 January 2020 | Fushun | Liaoning | 5 February 2020 |
Wuhan | Hubei | 23 January 2020 | Fuxin | Liaoning | 5 February 2020 |
Huangshi | Hubei | 24 January 2020 | Shenyang | Liaoning | 5 February 2020 |
Jingmen | Hubei | 24 January 2020 | Tieling | Liaoning | 5 February 2020 |
Jingzhou | Hubei | 24 January 2020 | Bayannur | Inner Mongolia | 12 February 2020 |
Shiyan | Hubei | 24 January 2020 | Ordos | Inner Mongolia | 12 February 2020 |
Xianning | Hubei | 24 January 2020 | Hohhot | Inner Monglia | 12 February 2020 |
Xiaogan | Hubei | 24 January 2020 | Ulanqab | Inner Mongolia | 12 February 2020 |
Yichang | Hubei | 24 January 2020 | Yinchuan | Ningxia | 31 January 2020 |
Xiangyang | Hubei | 28 January 2020 | Dongying | Shandong | 30 January 2020 |
Changzhou | Jiangsu | 4 February 2020 | Jining | Shandong | 3 February 2020 |
Nanjing | Jiangsu | 4 February 2020 | Linyi | Shandong | 4 February 2020 |
Nantong | Jiangsu | 4 February 2020 | Wenzhou | Zhejiang | 4 February 2020 |
Xuzhou | Jiangsu | 4 February 2020 | Hangzhou | Zhejiang | 4 February 2020 |
Yangzhou | Jiangsu | 5 February 2020 | Ningbo | Zhejiang | 4 February 2020 |
Wuxi | Jiangsu | 9 February 2020 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −7.557 * | −5.918 * | −8.723 ** | −0.371 | −3.295 *** | 4.705 *** | 0.010 |
(4.073) | (3.382) | (3.781) | (0.850) | (0.954) | (0.879) | (0.039) | |
wind | −3.813 *** | −4.111 *** | −3.336 *** | −0.975 *** | −3.165 *** | 2.940 *** | −0.047 *** |
(0.393) | (0.341) | (0.432) | (0.102) | (0.159) | (0.258) | (0.005) | |
airpressure | 0.782 *** | 0.552 *** | 0.696 *** | −0.159 *** | −0.252 *** | 0.780 *** | −0.009 *** |
(0.155) | (0.136) | (0.160) | (0.041) | (0.053) | (0.088) | (0.002) | |
temperature | 0.669 *** | 0.462 *** | 0.692 *** | −0.278 *** | −0.271 *** | 1.119 *** | −0.008 *** |
(0.180) | (0.158) | (0.203) | (0.049) | (0.064) | (0.100) | (0.003) | |
temper2 | 0.053 *** | 0.0435 *** | 0.0639 *** | 0.014 *** | 0.020 *** | 0.021 *** | 0.0003 *** |
(0.008) | (0.007) | (0.008) | (0.002) | (0.002) | (0.003) | (8.04 × 10−5) | |
humidity | 0.216 *** | 0.371 *** | −0.122 | −0.030 *** | 0.008 | −0.161 *** | 0.005 *** |
(0.063) | (0.048) | (0.096) | (0.008) | (0.013) | (0.024) | (0.0005) | |
sunduration | −0.725 *** | −0.454 *** | −1.088 *** | 0.020 | −0.023 | 0.938 *** | 0.0004 |
(0.161) | (0.118) | (0.293) | (0.026) | (0.037) | (0.06) | (0.0014) | |
Observations | 24,249 | 24,249 | 24,249 | 24,249 | 24,248 | 24,249 | 24,249 |
Adj R-squared | 0.484 | 0.504 | 0.421 | 0.601 | 0.706 | 0.612 | 0.577 |
Number of cities | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel C) short_t | −8.192 * | −6.874 * | −8.808 ** | −0.570 | −3.675 *** | 6.105 *** | 0.001 |
(4.681) | (4.132) | (4.222) | (1.085) | (1.342) | (1.157) | (0.050) | |
medium_t | −6.727 | −6.368 | −5.782 | −0.666 | −2.259 | 11.109 *** | 0.002 |
(5.401) | (4.862) | (4.826) | (1.444) | (1.560) | (2.500) | (0.060) | |
Observations | 53,029 | 53,031 | 53,031 | 53,031 | 53,028 | 53,031 | 53,031 |
Adj R-squared | 0.447 | 0.426 | 0.360 | 0.461 | 0.599 | 0.452 | 0.510 |
(Panel D) short_t | −7.086 * | −5.403 | −8.158 ** | −0.284 | −3.323 *** | 4.424 *** | 0.017 |
(4.219) | (3.524) | (3.910) | (0.870) | (1.073) | (0.898) | (0.041) | |
medium_t | −5.281 | −4.655 | −4.466 | −0.631 | −1.932 | 8.509 *** | 0.012 |
(4.873) | (4.194) | (4.480) | (1.126) | (1.291) | (2.218) | (0.051) | |
wind | −2.180 *** | −2.742 *** | −1.733 *** | −0.772 *** | −3.049 *** | 2.245 *** | −0.039 *** |
(0.281) | (0.233) | (0.369) | (0.088) | (0.153) | (0.277) | (0.003) | |
airpressure | 0.934 *** | 0.755 *** | 0.901 *** | −0.037 | 0.069 | 0.283 *** | −0.003 ** |
(0.128) | (0.117) | (0.133) | (0.042) | (0.044) | (0.097) | (0.001) | |
temperature | 0.081 | −0.067 | 0.085 | −0.358 *** | −0.138 *** | 1.345 *** | −0.007 *** |
(0.152) | (0.132) | (0.167) | (0.047) | (0.051) | (0.153) | (0.002) | |
temper2 | 0.052 *** | 0.041 *** | 0.054 *** | 0.012 *** | 0.013 *** | 0.036 *** | 0.0004 *** |
(0.006) | (0.005) | (0.007) | (0.002) | (0.002) | (0.004) | (6.98 × 10−5) | |
humidity | 0.038 | 0.207 *** | −0.247 *** | −0.036 *** | −0.021 * | −0.054 | 0.004 *** |
(0.040) | (0.033) | (0.061) | (0.009) | (0.012) | (0.034) | (0.0004) | |
sunduration | −0.496 *** | −0.415 *** | −0.965 *** | −0.007 | −0.060 * | 0.679 *** | −0.0004 |
(0.106) | (0.087) | (0.202) | (0.023) | (0.032) | (0.097) | (0.001) | |
Observations | 50,671 | 50,673 | 50,673 | 50,673 | 50,670 | 50,673 | 50,673 |
Adj R-squared | 0.481 | 0.469 | 0.384 | 0.519 | 0.658 | 0.558 | 0.566 |
Number of cities | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −8.151 * | −6.623 * | −10.01 ** | −1.132 | −3.232 *** | 3.991 *** | −0.0285 |
(4.766) | (3.951) | (4.447) | (0.969) | (1.120) | (0.949) | (0.0423) | |
wind2 | −3.847 *** | −4.162 *** | −3.371 *** | −0.990 *** | −3.223 *** | 2.973 *** | −0.0470 *** |
(0.410) | (0.356) | (0.449) | (0.106) | (0.166) | (0.268) | (0.005) | |
airpressure | 0.766 *** | 0.546 *** | 0.656 *** | −0.163 *** | −0.266 *** | 0.769 *** | −0.008 *** |
(0.158) | (0.139) | (0.161) | (0.0413) | (0.0541) | (0.0897) | (0.002) | |
temperature | 0.609 *** | 0.416 *** | 0.627 *** | −0.285 *** | −0.280 *** | 1.118 *** | −0.009 *** |
(0.180) | (0.157) | (0.204) | (0.0494) | (0.0649) | (0.102) | (0.003) | |
temper2 | 0.0527 *** | 0.0427 *** | 0.0631 *** | 0.0137 *** | 0.0207 *** | 0.0196 *** | 0.0002 *** |
(0.00783) | (0.00687) | (0.00753) | (0.00196) | (0.00214) | (0.00302) | (8.03 × 10−5) | |
humidity | 0.219 *** | 0.375 *** | −0.123 | −0.0321 *** | 0.00790 | −0.154 *** | 0.005 *** |
(0.0641) | (0.0483) | (0.0981) | (0.00854) | (0.0127) | (0.0240) | (0.0005) | |
sunduration | −0.745 *** | −0.469 *** | −1.125 *** | 0.00827 | −0.0178 | 0.941 *** | −0.0001 |
(0.168) | (0.123) | (0.308) | (0.0270) | (0.0390) | (0.0652) | (0.002) | |
Observations | 23,173 | 23,173 | 23,173 | 23,173 | 23,172 | 23,173 | 23,173 |
Adj R-squared | 0.492 | 0.511 | 0.428 | 0.608 | 0.709 | 0.617 | 0.589 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −8.288 * | −6.616 | −10.10 ** | −1.047 | −3.287 *** | 3.692 *** | −0.022 |
(4.885) | (4.066) | (4.525) | (0.971) | (1.240) | (0.978) | (0.045) | |
medium_t | −4.127 | −4.135 | −4.404 | −1.401 | −2.462 | 9.247 *** | −0.003 |
(5.503) | (4.770) | (5.143) | (1.284) | (1.502) | (2.556) | (0.059) | |
wind2 | −2.225 *** | −2.798 *** | −1.754 *** | −0.781 *** | −3.071 *** | 2.253 *** | −0.039 *** |
(0.289) | (0.239) | (0.382) | (0.0901) | (0.159) | (0.287) | (0.003) | |
airpressure | 0.916 *** | 0.743 *** | 0.877 *** | −0.0427 | 0.0687 | 0.266 *** | −0.003 ** |
(0.130) | (0.118) | (0.135) | (0.0421) | (0.0450) | (0.0982) | (0.001) | |
temperature | 0.0333 | −0.107 | 0.0418 | −0.362 *** | −0.136 *** | 1.343 *** | −0.007 *** |
(0.153) | (0.133) | (0.170) | (0.0475) | (0.0519) | (0.155) | (0.002) | |
temper2 | 0.0521 *** | 0.0408 *** | 0.0533 *** | 0.0115 *** | 0.0130 *** | 0.0368 *** | 0.0004 *** |
(0.00613) | (0.00514) | (0.00743) | (0.00162) | (0.00152) | (0.00359) | (7.11 × 10−5) | |
humidity | 0.0367 | 0.205 *** | −0.249 *** | −0.0378 *** | −0.0191 | −0.0478 | 0.004 *** |
(0.0410) | (0.0340) | (0.0625) | (0.00919) | (0.0123) | (0.0348) | (0.0004) | |
sunduration | −0.509 *** | −0.428 *** | −0.985 *** | −0.00965 | −0.0487 | 0.663 *** | −0.0005 |
(0.112) | (0.0904) | (0.212) | (0.0238) | (0.0327) | (0.101) | (0.001) | |
Observations | 48,333 | 48,335 | 48,335 | 48,335 | 48,332 | 48,335 | 48,335 |
Adj R-squared | 0.484 | 0.472 | 0.387 | 0.525 | 0.660 | 0.559 | 0.571 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −10.31 ** | −8.236 ** | −11.36 *** | −0.665 | −3.982 *** | 5.928 *** | −0.012 |
(4.211) | (3.485) | (3.975) | (0.882) | (0.994) | (0.948) | (0.040) | |
wind2 | −3.855 *** | −4.165 *** | −3.210 *** | −0.897 *** | −3.116 *** | 3.064 *** | −0.046 *** |
(0.431) | (0.339) | (0.490) | (0.0989) | (0.170) | (0.268) | (0.004) | |
airpressure | 0.649 *** | 0.421 *** | 0.609 *** | −0.169 *** | −0.289 *** | 0.848 *** | −0.009 *** |
(0.173) | (0.151) | (0.183) | (0.0431) | (0.0573) | (0.104) | (0.002) | |
temperature | 0.745 *** | 0.494 *** | 0.774 *** | −0.276 *** | −0.258 *** | 1.130 *** | −0.008 *** |
(0.182) | (0.159) | (0.219) | (0.0527) | (0.0686) | (0.114) | (0.003) | |
temper2 | 0.0456 *** | 0.0380 *** | 0.0564 *** | 0.0135 *** | 0.0185 *** | 0.0231 *** | 0.0002 *** |
(0.00754) | (0.00660) | (0.00770) | (0.00221) | (0.00221) | (0.00354) | (8.16 × 10−5) | |
humidity | 0.175 ** | 0.335 *** | −0.169 | −0.0298 *** | 0.00164 | −0.154 *** | 0.005 *** |
(0.0698) | (0.0521) | (0.109) | (0.00909) | (0.0131) | (0.0271) | (0.0005) | |
sunduration | −0.880 *** | −0.565 *** | −1.319 *** | 0.00975 | −0.0333 | 0.979 *** | −0.001 |
(0.181) | (0.129) | (0.343) | (0.0300) | (0.0396) | (0.0716) | (0.002) | |
Constant | −563.1 *** | −377.3 ** | −503.4 *** | 178.0 *** | 308.6 *** | −771.3 *** | 9.709 *** |
(167.9) | (147.0) | (173.1) | (41.60) | (55.72) | (100.8) | (1.760) | |
Observations | 19,897 | 19,897 | 19,897 | 19,897 | 19,896 | 19,897 | 19,897 |
Adj R-squared | 0.486 | 0.511 | 0.416 | 0.600 | 0.710 | 0.620 | 0.584 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −9.739 ** | −7.584 ** | −10.68 *** | −0.536 | −3.953 *** | 5.536 *** | −0.003 |
(4.352) | (3.624) | (4.086) | (0.896) | (1.110) | (0.964) | (0.042) | |
medium_t | −6.672 | −5.894 | −5.563 | −0.981 | −2.596 * | 10.46 *** | −0.001 |
(5.105) | (4.393) | (4.747) | (1.161) | (1.354) | (2.345) | (0.053) | |
wind2 | −2.060 *** | −2.641 *** | −1.463 *** | −0.746 *** | −3.006 *** | 2.235 *** | −0.038 *** |
(0.320) | (0.248) | (0.419) | (0.0933) | (0.169) | (0.293) | (0.003) | |
airpressure | 0.915 *** | 0.734 *** | 0.895 *** | −0.0435 | 0.0528 | 0.394 *** | −0.003 ** |
(0.145) | (0.132) | (0.151) | (0.0455) | (0.0490) | (0.104) | (0.002) | |
temperature | 0.182 | −0.000457 | 0.140 | −0.364 *** | −0.108 ** | 1.434 *** | −0.007 *** |
(0.158) | (0.140) | (0.177) | (0.0516) | (0.0520) | (0.168) | (0.002) | |
temper2 | 0.0445 *** | 0.0360 *** | 0.0453 *** | 0.0117 *** | 0.0117 *** | 0.0352 *** | 0.0003 *** |
(0.00626) | (0.00529) | (0.00801) | (0.00183) | (0.00158) | (0.00380) | (7.57 × 10−5) | |
humidity | 0.0192 | 0.193 *** | −0.267 *** | −0.0374 *** | −0.0203 * | −0.0462 | 0.004 *** |
(0.0424) | (0.0336) | (0.0684) | (0.00876) | (0.0117) | (0.0373) | (0.0004) | |
sunduration | −0.547 *** | −0.454 *** | −1.071 *** | −0.0171 | −0.0661 ** | 0.667 *** | −0.0013 |
(0.117) | (0.0911) | (0.235) | (0.0245) | (0.0323) | (0.105) | (0.0011) | |
Constant | −827.1 *** | −682.8 *** | −786.0 *** | 57.48 | −21.21 | −350.8 *** | 3.879 ** |
(140.1) | (127.5) | (142.3) | (44.00) | (47.36) | (101.4) | (1.531) | |
Observations | 42,069 | 42,070 | 42,070 | 42,070 | 42,069 | 42,070 | 42,070 |
Adj R-squared | 0.476 | 0.468 | 0.373 | 0.514 | 0.664 | 0.556 | 0.570 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
Lead_D5 | −5.549 | −4.570 | −3.712 | 1.020 | 4.249 ** | −8.092 *** | 0.062 |
(5.958) | (5.051) | (5.782) | (1.327) | (1.719) | (2.100) | (0.074) | |
Lead_D4 | −5.732 | −4.660 | −3.154 | −0.780 | 2.489 * | −8.857 *** | 0.007 |
(4.392) | (3.680) | (4.301) | (0.591) | (1.430) | (1.674) | (0.042) | |
Lead_D3 | −7.197 | −5.746 | −4.724 | −0.551 | 1.871 | −6.721 *** | −0.014 |
(5.459) | (4.615) | (5.371) | (0.743) | (1.271) | (1.245) | (0.045) | |
Lead_D2 | −4.893 | −3.240 | −0.991 | 0.0630 | −0.249 | −4.183 *** | −0.023 |
(5.802) | (5.297) | (5.978) | (1.095) | (1.019) | (1.187) | (0.043) | |
D0 | −14.671 *** | −12.611 *** | −12.291 *** | −1.196 * | −2.621 *** | −0.032 | −0.079 ** |
(4.291) | (3.519) | (4.060) | (0.620) | (0.853) | (0.955) | (0.039) | |
D1 | −7.581 * | −6.707 ** | −5.038 | 0.197 | −1.322 | −1.379 | −0.010 |
(4.280) | (3.404) | (4.398) | (0.861) | (0.939) | (1.351) | (0.037) | |
D2 | −15.856 *** | −12.207 *** | −14.56 *** | −0.476 | −1.466 | −2.921 *** | 0.015 |
(3.884) | (3.006) | (3.821) | (0.614) | (0.940) | (1.068) | (0.032) | |
D3 | −12.771 *** | −8.978 *** | −12.61 *** | 0.057 | −1.740 ** | −0.617 | 0.016 |
(3.918) | (3.165) | (3.709) | (0.748) | (0.859) | (1.411) | (0.037) | |
D4 | −11.930 *** | −7.589 ** | −15.75 *** | −0.964 | −2.658 ** | 0.455 | 0.032 |
(3.575) | (2.936) | (3.725) | (0.767) | (1.276) | (1.323) | (0.046) | |
D5 | −11.855 *** | −9.611 *** | −11.33 *** | −1.132 | −2.661 ** | −0.840 | 0.050 |
(3.994) | (3.192) | (3.602) | (0.836) | (1.277) | (1.403) | (0.045) | |
D6 | −9.897 ** | −7.569 ** | −8.539 ** | 0.052 | −1.349 | 0.481 | 0.037 |
(4.110) | (3.402) | (3.765) | (0.808) | (1.369) | (1.527) | (0.046) | |
wind2 | −3.792 *** | −4.094 *** | −3.315 *** | −0.972 *** | −3.160 *** | 2.953 *** | −0.046 *** |
(0.392) | (0.339) | (0.431) | (0.102) | (0.159) | (0.260) | (0.005) | |
airpressure | 0.797 *** | 0.564 *** | 0.708 *** | −0.158 *** | −0.250 *** | 0.782 *** | −0.008 *** |
(0.156) | (0.137) | (0.160) | (0.041) | (0.053) | (0.089) | (0.002) | |
temperature | 0.669 *** | 0.461 *** | 0.690 *** | −0.279 *** | −0.268 *** | 1.118 *** | −0.008 *** |
(0.179) | (0.157) | (0.203) | (0.050) | (0.064) | (0.100) | (0.003) | |
temper2 | 0.053 *** | 0.044 *** | 0.0640 *** | 0.0141 *** | 0.020 *** | 0.021 *** | 0.0003 *** |
(0.008) | (0.00684) | (0.008) | (0.002) | (0.002) | (0.003) | (8.08 × 10−5) | |
humidity | 0.219 *** | 0.374 *** | −0.120 | −0.030 *** | 0.008 | −0.158 *** | 0.005 *** |
(0.063) | (0.0480) | (0.096) | (0.008) | (0.012) | (0.024) | (0.0004) | |
sunduration | −0.726 *** | −0.453 *** | −1.091 *** | 0.020 | −0.024 | 0.938 *** | 0.0004 |
(0.161) | (0.118) | (0.294) | (0.026) | (0.037) | (0.064) | (0.001) | |
Observations | 24,249 | 24,249 | 24,249 | 24,249 | 24,248 | 24,249 | 24,249 |
Adj R-squared | 0.485 | 0.504 | 0.421 | 0.602 | 0.706 | 0.617 | 0.578 |
References
- Qi, J.; Zhang, D.; Zhang, X.; Takana, T.; Pan, Y.; Yin, P.; Liu, J.; Liu, S.; Gao, G.F.; He, G.; et al. Short-and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China. Nat. Hum. Behav. 2022, 6, 55–63. [Google Scholar] [CrossRef]
- Pan, S.; Jung, J.; Li, Z.; Hou, X.; Roy, A.; Choi, Y.; Gao, H.O. Air quality implications of COVID-19 in California. Sustainability 2020, 12, 7067. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Albayati, N.; Waisi, B.; Al-Furaiji, M.; Kadhom, M.; Alalwan, H. Effect of COVID-19 on air quality and pollution in different countries. J. Transp. Health 2021, 21, 101061. [Google Scholar]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765, 144270. [Google Scholar] [CrossRef]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air quality changes in New York City during the COVID-19 pandemic. Sci. Total Environ. 2020, 742, 140496. [Google Scholar] [CrossRef]
- Shehzad, K.; Bilgili, F.; Koçak, E.; Xiaoxing, L.; Ahmad, M. COVID-19 outbreak, lockdown, and air quality: Fresh insights from New York City. Environ. Sci. Pollut. Res. 2021, 28, 41149–41161. [Google Scholar]
- Chen, L.W.; Chien, L.C.; Li, Y.; Lin, G. Nonuniform impacts of COVID-19 lockdown on air quality over the United States. Sci. Total Environ. 2020, 745, 141105. [Google Scholar] [CrossRef]
- Cameletti, M. The Effect of Corona Virus Lockdown on Air Pollution: Evidence from the City of Brescia in Lombardia Region (Italy). Atmos. Environ. 2020, 239, 117794. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Eusébio, C.; Carneiro, M.J.; Madaleno, M.; Robaina, M.; Rodrigues, V.; Gama, C.; Relvas, H.; Russo, M.; Oliveira, K.; et al. Tourism and air quality during COVID-19 pandemic: Lessons for the future. Sustainability 2021, 13, 3906. [Google Scholar] [CrossRef]
- Gama, C.; Relvas, H.; Lopes, M.; Monteiro, A. The impact of COVID-19 on air quality levels in Portugal: A way to assess traffic contribution. Environ. Res. 2021, 193, 110515. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in air pollution during COVID-19 lockdown in Spain: A mul-ti-city study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Higham, J.E.; Ramírez, C.A.; Green, M.A.; Morse, A.P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Qual. Atmos. Health 2021, 14, 325–332. [Google Scholar] [CrossRef]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 116011. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754, 142374. [Google Scholar] [CrossRef] [PubMed]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Azad, M.A.; Hasanuzzaman, M.; Salam, R.; Islam, A.R.; Rahman, M.M.; Hoque, M.M. How air quality and COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Sci. Total Environ. 2021, 762, 143161. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A. Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Qual. Atmos. Health 2020, 13, 929–938. [Google Scholar] [CrossRef]
- Chau, P.N.; Zalakeviciute, R.; Thomas, I.; Rybarczyk, Y. Deep learning approach for assessing air quality during COVID-19 lock-down in Quito. Front. Big Data 2022, 5, 842455. [Google Scholar] [CrossRef]
- Das, P.; Mandal, I.; Debanshi, S.; Mahato, S.; Talukdar, S.; Giri, B.; Pal, S. Short term unwinding lockdown effects on air pollution. J. Clean. Prod. 2021, 296, 126514. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Broomandi, P.; Karaca, F.; Nikfal, A.; Jahanbakhshi, A.; Tamjidi, M.; Kim, J.R. Impact of COVID-19 event on the air quality in Iran. Aerosol Air Qual. Res. 2020, 20, 1793–1804. [Google Scholar] [CrossRef]
- Etchie, T.O.; Etchie, A.T.; Jauro, A.; Pinker, R.T.; Swaminathan, N. Season, not lockdown, improved air quality during COVID-19 State of Emergency in Nigeria. Sci. Total Environ. 2021, 768, 145187. [Google Scholar] [CrossRef]
- Dursun, S.; Sagdic, M.; Toros, H. The impact of COVID-19 measures on air quality in Turkey. Environ. Forensics 2022, 23, 47–59. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Liu, B. The impact of the Wuhan COVID-19 lockdown on air pollution and health: A machine learning and augmented synthetic control approach. Environ. Resour. Econ. 2020, 76, 553–580. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ma, J.; Zhu, S.; Shen, J.; Wang, P.; Zhang, H. Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Sci. Total Environ. 2021, 756, 143868. [Google Scholar] [CrossRef]
- Wang, M.; Liu, F.; Zheng, M. Air quality improvement from COVID-19 lockdown: Evidence from China. Air Qual. Atmos. Health 2021, 14, 591–604. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.F.; Hsieh, Y.K.; Wan, S.; Zhang, J. Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Wang, Y.; Zhang, S.; Zhang, K.M.; Zheng, H.; Xing, J.; Wu, Y.; Hao, J. Four-month changes in air quality during and after the COVID-19 lockdown in six megacities in China. Environ. Sci. Technol. Lett. 2020, 7, 802–808. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Cuhadaroglu, B.; Demirci, E. Influence of some meteorological factors on air pollution in Trabzon city. Energy Build. 1997, 25, 179–184. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Danek, T.; Weglinska, E.; Zareba, M. The influence of meteorological factors and terrain on air pollution concentration and mi-gration: A geostatistical case study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef] [PubMed]
- China National Environmental Monitoring Station. Available online: https://air.cnemc.cn:18007/ (accessed on 23 June 2024).
- Ambient Air Quality Standards. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.htm (accessed on 23 June 2024).
- China Meteorological Data Service Centre. Available online: https://data.cma.cn/en (accessed on 23 June 2024).
- Sustainable Development Goals. Available online: https://unstats.un.org/sdgs/indicators/indicators-list/ (accessed on 23 June 2024).
- Sustainable Cities and Communities—Indicators for City Services and Quality of Life. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:37120:ed-2:v1:en (accessed on 23 June 2024).
- New-Type Urbanization—Evaluation Index System of Quality City. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=90A631A301C7F5F3565E0B8489B5A737 (accessed on 24 June 2024).
- China Mobile Source Environmental Management Annual Report. Available online: https://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202109/W020210910400449015882.pdf (accessed on 24 June 2024).
- 2020 China City Statistical Yearbook. Available online: https://www.stats.gov.cn/zs/tjwh/tjkw/tjzl/202302/t20230215_1907995.html (accessed on 24 June 2024).
- Carbon Emission Accounts and Datasets. Available online: https://www.ceads.net/ (accessed on 6 July 2024).
- China Population Census Yearbook 2020. Available online: https://www.stats.gov.cn/sj/pcsj/rkpc/7rp/zk/indexce.htm (accessed on 24 June 2024).
- Liang, L.; Gong, P. Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Sci. Rep. 2020, 10, 18618. [Google Scholar] [CrossRef]
- Lu, S.; Yao, Y.; Zhang, S.; Zhao, J. Long-Term Impacts of COVID-19 on Air Quality: Insights from Human Travel Behavior. 2022. Available online: https://nsd.pku.edu.cn/docs/20220507231557716167.pdf (accessed on 8 July 2024).
- Zhang, H.; Jiang, H.; Gao, J.; Li, H. Review on Causes and Influencing Factors of O3 Pollution in China (in Chinese). Res. Environ. Sci. 2022, 12, 2657–2665. [Google Scholar]
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel A) short_t | −8.398 * | −6.951 * | −8.884 ** | −0.357 | −3.345 ** | 5.790 *** | 0.001 |
(4.541) | (4.000) | (4.087) | (1.059) | (1.291) | (1.054) | (0.048) | |
Observations | 24,401 | 24,401 | 24,401 | 24,401 | 24,400 | 24,401 | 24,401 |
Adj R-squared | 0.458 | 0.457 | 0.403 | 0.567 | 0.646 | 0.488 | 0.519 |
(Panel B) short_t | −7.557 * | −5.918 * | −8.723 ** | −0.371 | −3.295 *** | 4.705 *** | 0.010 |
(4.073) | (3.382) | (3.781) | (0.850) | (0.954) | (0.879) | (0.039) | |
Meteorological control | Y | Y | Y | Y | Y | Y | Y |
Observations | 24,249 | 24,249 | 24,249 | 24,249 | 24,248 | 24,249 | 24,249 |
Adj R-squared | 0.484 | 0.504 | 0.421 | 0.601 | 0.706 | 0.612 | 0.577 |
Number of cities | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel C) short_t | −8.151 * | −6.623 * | −10.009 ** | −1.132 | −3.232 *** | 3.991 *** | −0.029 |
(4.766) | (3.951) | (4.447) | (0.969) | (1.120) | (0.949) | (0.042) | |
Observations | 23,173 | 23,173 | 23,173 | 23,173 | 23,172 | 23,173 | 23,173 |
Adj R-squared | 0.484 | 0.504 | 0.420 | 0.602 | 0.705 | 0.612 | 0.583 |
(Panel D) short_t | −8.288 * | −6.616 | −10.102 ** | −1.047 | −3.287 *** | 3.692 *** | −0.022 |
(4.885) | (4.066) | (4.525) | (0.971) | (1.240) | (0.978) | (0.045) | |
medium_t | −4.127 | −4.135 | −4.404 | −1.401 | −2.462 | 9.247 *** | −0.003 |
(5.503) | (4.770) | (5.143) | (1.284) | (1.502) | (2.556) | (0.059) | |
Observations | 48,333 | 48,335 | 48,335 | 48,335 | 48,332 | 48,335 | 48,335 |
Adj R-squared | 0.480 | 0.467 | 0.381 | 0.520 | 0.657 | 0.555 | 0.567 |
Number of cities | 238 | 238 | 238 | 238 | 238 | 238 | 238 |
Meteorological control | Y | Y | Y | Y | Y | Y | Y |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel E) short_t | −10.312 ** | −8.236 ** | −11.365 *** | −0.665 | −3.982 *** | 5.928 *** | −0.012 |
(4.211) | (3.485) | (3.975) | (0.882) | (0.994) | (0.948) | (0.040) | |
Observations | 19,897 | 19,897 | 19,897 | 19,897 | 19,896 | 19,897 | 19,897 |
Adj R-squared | 0.478 | 0.504 | 0.407 | 0.594 | 0.705 | 0.614 | 0.578 |
(Panel F) short_t | −9.739 ** | −7.584 ** | −10.683 *** | −0.536 | −3.953 *** | 5.536 *** | −0.003 |
(4.352) | (3.624) | (4.086) | (0.896) | (1.110) | (0.964) | (0.042) | |
medium_t | −6.672 | −5.894 | −5.563 | −0.981 | −2.596 * | 10.461 *** | −0.001 |
(5.105) | (4.393) | (4.747) | (1.161) | (1.354) | (2.345) | (0.053) | |
Observations | 42,069 | 42,070 | 42,070 | 42,070 | 42,069 | 42,070 | 42,070 |
Adj R-squared | 0.471 | 0.463 | 0.367 | 0.509 | 0.660 | 0.552 | 0.566 |
Number of cities | 204 | 204 | 204 | 204 | 204 | 204 | 204 |
Meteorological control | Y | Y | Y | Y | Y | Y | Y |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yoon, Y. The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China. Sustainability 2024, 16, 5969. https://doi.org/10.3390/su16145969
Yang Z, Yoon Y. The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China. Sustainability. 2024; 16(14):5969. https://doi.org/10.3390/su16145969
Chicago/Turabian StyleYang, Zili, and Yong Yoon. 2024. "The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China" Sustainability 16, no. 14: 5969. https://doi.org/10.3390/su16145969
APA StyleYang, Z., & Yoon, Y. (2024). The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China. Sustainability, 16(14), 5969. https://doi.org/10.3390/su16145969