Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Satellite Data
3.2. Ground Observations
3.3. Methods of Data Analysis
4. Results
4.1. Satellite versus Coastal Observations
4.2. Ice Cover Conditions in The Curonian Lagoon During 2002–2017
4.3. Spatial Properties of Ice Cover Extent in The Curonian Lagoon
4.4. Freezing and Melting Seasons
4.5. Ice Season Duration
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belchansky, G.I. Arctic Ecological Research from Microwave Satellite Observations; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Meier, W.N.; Hovelsrud, G.K.; van Oort, B.E.H.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K.; et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 51, 185–217. [Google Scholar] [CrossRef]
- Benson, J.B.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Livingstone, D.M.; Meilis, M.; Jensen, O.; Benson, B.; Magnuson, J.J. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Chang. Biol. 2010, 17, 268–275. [Google Scholar] [CrossRef]
- EEA (European Environment Agency) Report. Climate Change, Impacts and Vulnerability in Europe 2016; An Indicator-Based Report. No 1/2017; Publications Office of the European Union: Luxembourg, 2017, 2017. [Google Scholar] [CrossRef]
- Höglund, A.; Pemberton, P.; Hordoir, R.; Schimanke, S. Ice conditions for maritime traffic in the Baltic Sea in future climate. Boreal Environ. Res. 2017, 22, 245–265. [Google Scholar]
- Löptien, U.; Axell, L. Ice and AIS: Ship speed data and sea ice forecasts in the Baltic Sea. Cryosphere 2014, 8, 2409–2418. [Google Scholar] [CrossRef]
- Krämer, I.; Borenäs, K.; Daschkeit, A.; Filies, C.; Haller, I.; Janßen, H.; Karstens, S.; Kūle, L.; Lapinskis, J.; Varjopuro, R. Climate Change Impacts on Infrastructure in the Baltic Sea Region; Baltadapt Report # 5; Danish Meteorological Institute: Copenhagen, Denmark, 2012. [Google Scholar]
- Haapala, J.J.; Ronkainen, I.; Schmelzer, N.; Sztobryn, M. Recent Change—Sea Ice. In Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies; Bolle, H.J., Menenti, M., Ichtiaque Rasool, S., Eds.; Springer: Cham, Germany, 2015; pp. 145–153. [Google Scholar]
- Vihma, T.; Haapala, J. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 2009, 80, 129–148. [Google Scholar] [CrossRef]
- Granskog, M.; Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Vainio, J. Sea ice in the Baltic Sea—A review. Estuar. Coast. Shelf Sci. 2006, 70, 145–160. [Google Scholar] [CrossRef]
- Askne, J.; Dierking, W. Sea Ice Monitoring in the Arctic and Baltic Sea Using SAR. In Remote Sensing of the European Seas; Barale, V., Gade, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 383–398. [Google Scholar]
- Karvonen, J. Operational SAR-based sea ice drift monitoring over the Baltic Sea. Ocean Sci. 2012, 8, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J. Evaluation of the operational SAR based Baltic Sea ice concentration products. Adv. Space Res. 2015, 56, 119–132. [Google Scholar] [CrossRef]
- Similä, M.; Karvonen, J.; Haas, C. Inferring the degree of ice field deformation in the Baltic Sea using Envisat ASAR images. In Advances in SAR Oceanography from Envisat and ERS Missions, Proceedings of SEASAR 2006, Frascati, Italy, 23–26 January 2006; Lacoste, H., Ouwehand, L., Eds.; ESA Publications Division, ESTEC: Noordwijk, The Netherlands, 2006. [Google Scholar]
- Gegiuc, A.; Similä, M.; Karvonen, J.; Lensu, M.; Mäkynen, M.; Vainio, J. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data. Cryosphere 2018, 12, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.D.; Bidawe, T.G.; Luis, A.J. A Review on Applications of Imaging Synthetic Aperture Radar with a Special Focus on Cryospheric Studies. Adv. Remote Sens. 2015, 4, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Dierking, W. Sea ice monitoring by synthetic aperture radar. Oceanography 2013, 26, 100–111. [Google Scholar] [CrossRef]
- Vybernaite-Lubiene, I.; Zilius, M.; Saltyte-Vaisiauske, L.; Bartoli, M. Recent Trends (2012–2016) of N, Si, and P Export from the Nemunas RiverWatershed: Loads, Unbalanced Stoichiometry, and Threats for Downstream Aquatic Ecosystems. Water 2018, 10, 1178. [Google Scholar] [CrossRef]
- Umgiesser, G.; Zemlys, P.; Ertürk, A.; Razinkovas-Baziukas, A.; Mėžinė, J.; Ferrarin, C. Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing. Ocean Sci. 2016, 12, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Adrian, R.; Walz, N.; Hintze, T.; Hoeg, S.; Rusche, R. Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw. Biol. 1999, 41, 621–632. [Google Scholar] [CrossRef]
- Pełechata, A.; Pełechaty, M.; Pukacz, A. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat. Bot. 2015, 124, 10–18. [Google Scholar] [CrossRef]
- Vybernaite-Lubiene, I.; Zilius, M.; Giordani, G.; Petkuviene, J.; Vaiciute, D.; Bukaveckas, P.A.; Bartoli, M. Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuar. Coast. Shelf Sci. 2017, 194, 217–228. [Google Scholar] [CrossRef]
- Kozlov, I.E.; Kudryavtsev, V.N.; Johannessen, J.A.; Chapron, B.; Dailidienė, I.; Myasoedov, A.G. ASAR imaging for coastal upwelling in the Baltic Sea. Adv. Space Res. 2012, 50, 1125–1137. [Google Scholar] [CrossRef]
- Dabuleviciene, T.; Kozlov, I.E.; Vaiciute, D.; Dailidiene, I. Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment. Remote Sens. 2018, 10, 1752:1–1752:24. [Google Scholar] [CrossRef]
- Adamo, M.; Matta, E.; Bresciani, M.; De Carolis, G.; Vaičiūte, D.; Giardino, C.; Pasquariello, G. On the synergistic use of SAR and optical imagery to monitor cyanobacteria blooms: The Curonian Lagoon case study. Eur. J. Remote Sens. 2013, 46, 789–805. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Umgiesser, G.; Vaičiūtė, D.; Bresciani, M.; Kozlov, I.; Zaiko, A. GIS-based multi-criteria site selection for zebra mussel cultivation: Addressing end-of-pipe remediation of a eutrophic coastal lagoon ecosystem. Sci. Total Environ. 2018, 634, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Šarauskienė, D.; Jurgelėnaitė, A. Impact of Climate Change on River Ice Phenology in Lithuania. Environ. Res. Eng. Manag. 2008, 46, 13–22. [Google Scholar]
- Kilkus, K.; Vilkelytė, D. Ledo dangos storio Lietuvos ežeruose daugiametė kaita. GEOGRAFIJA 2010, 46, 1–6. [Google Scholar]
- Glavickas, T.; Stonevičius, E. Ledo sangrūdų paplitimo Lietuvos upėse ir jų poveikio upių vandens lygiui vertinimas. GEOGRAFIJA 2012, 48, 119–131. [Google Scholar] [CrossRef]
- Petkevičius, D. The Ice Jam Modelling for Neris River Reach in Kaunas City. Master’s Thesis, Aleksandras Stulginskis University, Kaunas, Lithuania, 2016. [Google Scholar]
- Baušys, J. Ledo Režimas. In Kuršių Marios II; Rainys, A., Ed.; Mokslas: Vilnius, Lithuania, 1978; pp. 34–49. [Google Scholar]
- Jarmalavičius, D. Lietuvos Jūrinis Krantas. In Klimato Kaita: Prisitaikymas Prie Jos Poveikio Lietuvos Pajūryje; Bukantis, A., Šinkūnas, P., Taločkaitė, E., Eds.; Vilniaus Universiteto Leidykla: Vilnius, Lithuania, 2007; pp. 25–31. [Google Scholar]
- Rukšėnienė, V.; Dailidienė, I.; Myrberg, K.; Dučinskas, K. A simple approach for statistical modelling of ice phenomena in the Curonian Lagoon, the south-eastern Baltic Sea. BALTICA 2015, 28, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Dailidienė, I. Kuršių marių hidrologinio režimo pokyčiai. GEOGRAFIJA 2007, 43, 36–43. [Google Scholar]
- Balevičienė, J.; Balevičius, A.; Stanevičius, V.; Vaitkus, G.; Gurova, E. Kuršių Marių Pakrantės Augmenijos Pjovimo, Siekiant iš Marių Pašalinti Dalį Biogeninių Medžiagų; Galimybių Studija: Vilnius, Lithuania, 2007. [Google Scholar]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 197–215. [Google Scholar]
- Zemlys, P.; Ferrarin, C.; Umgiesser, G.; Gulbinskas, S.; Bellafiore, D. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci. 2013, 9, 573–584. [Google Scholar] [CrossRef]
- Žilinskas, G.; Jarmalavičius, D.; Pupienis, D.; Gulbinas, Z.; Korotkich, P.; Palčiauskaitė, R.; Pileckas, M.; Raščius, G. Kuršių Marių Krantų Apsaugos ir Naudojimo Studija; VšĮ Gamtos paveldo fondas: Vilnius, Lithuania, 2012. [Google Scholar]
- Van der Schrier, G.; van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Verver, G. Monitoring European average temperature based on the E-OBS gridded data set. J. Geophys. Res. Atmos. 2013, 118, 5120–5135. [Google Scholar] [CrossRef]
- Dailidienė, I. Hidroklimatinių Sąlygų Kaitos Ypatumai Baltijos Jūros Lietuvos Priekrantėje ir Kuršių Mariose. Ph.D. Thesis, Klaipėda University, Klaipėda, Lithuania, 2007. [Google Scholar]
- Ministry of Environment of the Republic of Lithuania. State Environmental Monitoring Program; Public Information and Publishing Unit of the Ministry of the Environment of the Republic of Lithuania: Vilnius, Lithuania, 1998. [Google Scholar]
- Jackson, C.R.; Apel, J.R. Synthetic Aperture Radar Marine User’s Manual; U.S. Department of Commerce: Washington, DC, USA, 2004.
- Johannessen, O.M.; Alexandrov, V.Y.; Frolov, I.Y.; Bobylev, L.P.; Sandven, S.; Pettersson, L.H.; Kloster, K.; Babich, N.G.; Mironov, Y.U.; Smirnov, V.G. Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications; Springer: Chichester, UK, 2007. [Google Scholar]
- Muckenhuber, S.; Nilsen, F.; Korosov, A.; Sandven, S. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. Cryosphere 2016, 10, 149–158. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods; Edward Arnold: London, UK, 1990. [Google Scholar]
- Gough, W.A.; Cornwell, A.R.; Tsuji, L.J.S. Trends in Seasonal Sea Ice Duration in Southwestern Hudson Bay. Arctic 2004, 57, 299–305. [Google Scholar] [CrossRef]
- Gagnon, A.S.; Gough, W.A. East–west asymmetry in long-term trends of landfast ice thickness in the Hudson Bay region, Canada. Clim. Res. 2006, 32, 177–186. [Google Scholar] [CrossRef]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Menard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Solvang, T. Historical Trends in Lake and River Ice Cover in Norway. Masters’s Thesis, University of Oslo, Oslo, Norway, 2013. [Google Scholar]
- Käyhkö, J.; Apsite, E.; Bolek, A.; Filatov, N.; Kondratyev, S.; Korhonen, J.; Kriaučiūnienė, J.; Lindström, G.; Nazarova, L.; Pyrh, A.; et al. Recent Change—River Run-off and Ice Cover. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Springer: Cham, Germany, 2015; pp. 99–116. [Google Scholar]
- Research Staff (Ed.) The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). National Center for Atmospheric. Available online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based (accessed on 24 March 2018).
- Karvonen, J.; Cheng, B.; Vihma, T.; Arkett, M.; Carrieres, T. A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model. Cryosphere 2012, 6, 1507–1526. [Google Scholar] [CrossRef]
- Fetterer, F.; Gineris, D.; Kwok, R. Sea ice type maps from Alaska Synthetic Aperture Radar Facility imagery: An assessment. J. Geophys. Res. 1994, 99, 22443–22458. [Google Scholar] [CrossRef]
- Subashini, P.; Krishnaveni, M.; Ane, B.K.; Roller, D. SVM-Based Classification for Identification of Ice Types in SAR Images Using Color Perception Phenomena. In Innovations in Bio-Inspired Computing and Applications; Abraham, A., Krömer, P., Snášel, V., Eds.; Springer: Cham, Germany, 2014; pp. 285–293. [Google Scholar]
- Zakhvatkina, N.Y.; Alexandrov, V.Y.; Johannessen, O.M.; Sandven, S.; Frolov, I.Y. Classification of Sea Ice Types in ENVISAT Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Siitam, L.; Sipelgas, L.; Pärn, O.; Uiboupin, R. Statistical characterization of the sea ice extent during different winter scenarios in the Gulf of Riga (Baltic Sea) using optical remote-sensing imagery. Int. J. Remote Sens. 2017, 38, 617–638. [Google Scholar] [CrossRef]
- Dailidienė, I.; Davulienė, L.; Kelpšaitė, L.; Razinkovas, A. Analysis of the Climate Change in Lithuanian Coastal Areas of the Baltic Sea. J. Coast. Res. 2012, 28, 557–569. [Google Scholar] [CrossRef]
- Hanna, E.; Cropper, T.E. North Atlantic Oscillation. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Peterson, K.A.; Scaife, A.A.; Vainio, J.; Gregow, H. Skilful seasonal predictions of Baltic Sea ice cover. Environ. Res. Lett. 2015, 10, 044007. [Google Scholar] [CrossRef]
- Omstedt, A.; Elken, J.; Lehmann, A.; Leppäranta, M.; Meier, H.E.M.; Myrberg, K.; Rutgersson, A. Progress in physical oceanography of the Baltic Sea during the 2003–2014 period. Prog. Oceanogr. 2014, 128, 139–171. [Google Scholar] [CrossRef]
- Girjatowicz, J.P. The Relationships between the North Atlantic Oscillation and Southern Baltic Coast Ice Conditions. J. Coast. Res. 2005, 21, 281–291. [Google Scholar] [CrossRef]
- Kļaviņš, M.; Avotniece, Z.; Rodinovs, V. Dynamics and impacting factors of ice regimes in Latvia inland and coastal waters. Proc. Latv. Acad. Sci. 2016, 70, 400–408. [Google Scholar] [CrossRef]
- Chubarenko, B.; Chechko, V.; Kileso, A.; Krek, E.; Topchaya, V. Hydrological and sedimentation conditions in a non-tidal lagoon during ice coverage—The example of Vistula Lagoon in the Baltic Sea. Estuar. Coast. Shelf Sci. 2019, 216, 38–53. [Google Scholar] [CrossRef]
- Rutgersson, A.; Jaagus, J.; Schenk, F.; Stendel, M.; Barring, L.; Briede, A.; Claremar, B.; Hanssen-Bauer, I.; Holopainen, J.; Moberg, A.; et al. Recent Change—Atmosphere. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Springer: Cham, Germany, 2015; pp. 69–97. [Google Scholar]
- Rees, W.G. Remote Sensing of Snow and Ice; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703:1–L01703:6. [Google Scholar] [CrossRef]
- Petty, A.A.; Stroeve, J.C.; Holland, P.R.; Boisvert, L.N.; Bliss, A.C.; Kimura, N.; Meier, W.N. The Arctic sea ice cover of 2016: A year of record-low highs and higher-than-expected lows. Cryosphere 2018, 12, 433–452. [Google Scholar] [CrossRef]
- Francis, J.; Skific, N. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A 2015, 373, 20140170:1–20140170:12. [Google Scholar] [CrossRef] [PubMed]
- Sevellec, F.; Fedorov, A.V.; Liu, W. Arctic sea ice decline weakens the Atlantic meridional overturning circulation. Nat. Clim. Chang. 2017, 7, 604–610. [Google Scholar] [CrossRef]
- Screen, J.A. The missing Northern European winter cooling response to Arctic sea ice loss. Nat. Commun. 2017, 8, 14603:1–14603:9. [Google Scholar] [CrossRef]
- Ronkainen, I. Long-Term Changes in Baltic Sea Ice Conditions. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2013. [Google Scholar]
Mission | Image Mode | Resolution (m) | Pixel Spacing (m) | Swath Width (km) | Data Coverage |
---|---|---|---|---|---|
Envisat Advanced SAR (ASAR) | Wide swath mode (WSM) | 150 × 150 | 75 × 75 | 400 | 2002–2012 April |
RADARSAT-2 | ScanSAR | 100 × 100 | 50 × 50 | 500 | 2012–2014 April |
Sentinel-1A | Interferometric Wide swath (IW High) Extra-Wide swath (EW Medium) | 5 × 20, 93 × 87 | 10 × 10, 40 × 40 | 250 400 | November 2014–2017 |
Sentinel-1B | Interferometric Wide swath (IW High) Extra-Wide swath (EW Medium) | 5 × 20, 93 × 87 | 10 × 10, 40 × 40 | 250 400 | December 2016–2017 |
MODIS | 250 × 250 | 250 | 2330 | 2002–2007, 2014–2017 |
Year | Image Count (+MODIS) | SAR Images per Week (with MODIS) | [days] | [days] | [days] | [days] | [°C] |
---|---|---|---|---|---|---|---|
2002–2003 | 14( + 34) | 0–2(1–5) | 118 | 113 | 123 | 123 | −591.9 |
2003–2004 | 12( + 14) | 0–3(0–5) | 88 | 72 | 86 | 90 | −284.7 |
2004–2005 | 31( + 15) | 1–3(2–8) | 72 | 64 | 74 | 74 | −248.4 |
2005–2006 | 51( + 15) | 1–3(1–7) | 138 | 113 | 136 | 138 | −586.8 |
2006–2007 | 20( + 5) | 1–4(2–4) | 48 | 39 | 50 | 51 | −169.4 |
2007–2008 | 17( + 5) | 2–3 | 45 | 22 | 47 | 47 | −46.0 |
2008–2009 | 50 | 1–3 | 94 | 76 | 84 | 94 | −170.3 |
2009–2010 | 53 | 2–3 | 112 | 105 | 107 | 114 | −561.7 |
2010–2011 | 55 | 1–3 | 134 | 116 | 127 | 134 | −497.0 |
2011–2012 | 46 | 2–4 | 64 | 52 | 63 | 65 | −346.0 |
2012–2013 | 56 | 1–3 | 125 | 115 | 127 | 129 | −483.1 |
2013–2014 | 32 | 2–3 | 57 | 50 | 57 | 57 | −214.0 |
2014–2015 | 27( + 5) | 1–2(1–4) | 93 | 41 | 94 | 95 | −42.5 |
2015–2016 | 26( + 5) | 1–2(1–5) | 55 | 37 | 53 | 58 | −185.5 |
2016–2017 | 24( + 3) | 2–3(2–4) | 63 | 49 | 60 | 63 | −145.0 |
FO | FF | MO | LOI | ISD | |
---|---|---|---|---|---|
Date from in situ | 26 December | 4 January | 1 March | 21 March | 86 |
Date from satellite data | 27 December | 4 January | 24 February | 23 March | 87 |
Average difference (days) | −0.46 | −0.62 | 5 | −2.18 | −1.29 |
Sum of all differences (days) | −6 | −8 | 60 | −24 | −18 |
Max difference (days) | −5/5 | −7 | 23 | −8 | −10 |
Satellite success rate (SSR) | 38% | 62% | 75% | 82% | 57% |
Mean SSR | 63% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idzelytė, R.; Kozlov, I.E.; Umgiesser, G. Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon). Remote Sens. 2019, 11, 2059. https://doi.org/10.3390/rs11172059
Idzelytė R, Kozlov IE, Umgiesser G. Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon). Remote Sensing. 2019; 11(17):2059. https://doi.org/10.3390/rs11172059
Chicago/Turabian StyleIdzelytė, Rasa, Igor E. Kozlov, and Georg Umgiesser. 2019. "Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon)" Remote Sensing 11, no. 17: 2059. https://doi.org/10.3390/rs11172059
APA StyleIdzelytė, R., Kozlov, I. E., & Umgiesser, G. (2019). Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon). Remote Sensing, 11(17), 2059. https://doi.org/10.3390/rs11172059